期刊文献+

热暴露对欠时效态Al-Cu-Mg-Ag合金拉伸性能的影响 被引量:8

Effect of thermal exposure on tensile properties of underaged Al-Cu-Mg-Ag alloy
下载PDF
导出
摘要 采用拉伸力学性能测试、透射电镜微观组织分析和扫描电镜断口分析等方法,研究热暴露对一种欠时效态Al—Cu-Mg-Ag合金力学性能及微观组织的影响。结果表明:在150℃热暴露下,欠时效态Al-Cu-Mg-Ag合金的剩余强度先上升后下降,强度峰值出现在100h;热暴露1000h后,合金的力学性能相对欠时效态合金的无明显下降;在200~300℃热暴露时,合金强度随时间的延长而下降,伸长率随着时间的延长而增大;在300℃热暴露时,强度明显下降,热暴露10h后,其抗拉强度只有272.5MPa,暴露100h后,其抗拉强度降至114.5MPa;欠时效态合金细小分布的Ω相随着热暴露温度的升高,Ω相长大并粗化,θ’相析出,无沉淀析出带(PFZ)变宽;在250℃下热暴露时,Ω相明显粗化且数量稀少;合金中的Ω相和θ’相在300℃热暴露100h后,均转变成平衡Ω相。 The effects of long term thermal exposure on mechanical properties and microstructures of an underaged Al-Cu-Mg-Ag alloy were investigated by tensile test, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that the residual strength of underaged samples appears to increase first whereas then decrease, the peaking strength is obtained after exposuring at 150 ℃ for 100 h. Compared with the underage condition, the mechanical properties of the underaged Al-Cu-Mg-Al alloys have no obvious variation after exposuring for 1 000 h, which represent superior heat resistance. The residual strengths of underage samples decrease versus elongation increases as the exposure time prolongs and temperature rises from 200 to 300 ℃. The tensile strengths of the samples are 272.5 MPa and 114.5 MPa after exposuring at 300 ℃ for 10 h and 100 h, respectively, revealing obvious reduce in strength. With increasing exposure temperature and/or time, the thickening kinetics of Ω phase greatly increases and the precipitation free zones are broadened at grain boundary. Finally, Ω and θ' phases are replaced by equilibrium θ phase, which decreases the strength of the alloy.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2009年第5期808-815,共8页 The Chinese Journal of Nonferrous Metals
基金 国家重点基础研究发展计划资助项目(2005CB623705-04)
关键词 Al-Cu—Mg—Ag合金 欠时效 热暴露 力学性能 显微组织 Al-Cu-Mg-Ag alloy underage thermal exposure mechanical properties microstructure
  • 相关文献

参考文献16

  • 1POLMEAR I J, PONS G, BARBAUX Y, OCTOR H, SANCHEZ C, MORTON A J, BORBIDGE W E, ROGERS S. After concorde: evaluation of creep resistant Al-Cu-Mg-Ag alloys[J]. Materials Science and Technology, 1996, 15: 861-868.
  • 2GABLE BRIAN M, SHIFLET G. J, STARK E Jr. Alloy development for the enhanced stability of Omega precipitates in Al-Cu-Mg-Ag alloys[J]. Metall Mater Trans A, 2006, 37(4): 1091-1105.
  • 3张坤,戴圣龙,杨守杰,黄敏,颜鸣皋.Al-Cu-Mg-Ag系新型耐热铝合金研究进展[J].航空材料学报,2006,26(3):251-257. 被引量:19
  • 4TELESHOV V V, KAPUTKIN E Y, GOLOVLEVA A P, KOSMACHEVA N R Temperature ranges of phase transformations and mechanical properties of alloys of the Al-Cu-Mg-Ag system with various Cu/Mg ratios[J]. Metal Science and Heat Treatment, 2005, 47(3/4): 139-144.
  • 5肖代红,王健农,陈世朴,丁冬雁.微量Ag对Al-5.3Cu-0.8Mg合金组织和耐热性能的影响[J].机械工程材料,2003,27(1):38-40. 被引量:27
  • 6LUMLEY R N, MORTON A J, POLMEAR I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing[J]. Acta Materialia, 2002, 50: 3597-3608.
  • 7LUMLEY R N, O'DONNELL R G, POLMEAR I J, GRIFFITHS J R. Enhanced fatigue resistance by underageing in Al-Cu-Mg-Ag alloy[J]. Materials Forum, 2005, 29: 256-261.
  • 8LUMLEY R N, POLMEAR I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy[J]. Scripta Materialia, 2004, 50(9):1227-1231.
  • 9NIE J F, MUDDLE B C, POLMEAR I J. Effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys[J]. Materials Science Forum, 1996, 217/222(2): 1257-1262.
  • 10EDAHL R A JR, DOMACK M S. Effect of thermal exposure on the tensile properties of aluminum alloys for elevated temperature service[R]. NASA/TP-2004-212988, Virginia: National Aeronautics and Space Administration, 2004.

二级参考文献36

  • 1吴一雷,李永伟,强俊,李春玉.超高强度铝合金的发展与应用[J].航空材料学报,1994,14(1):49-55. 被引量:90
  • 2王莉梅.Al-Cu-Mg系合金时效过程的电镜观察[J].轻合金加工技术,1995,23(6):15-19. 被引量:7
  • 3[1]POLMEAR I J,PONS G.After Concorde:evaluation of creep resistance Al-Cu-Mg-Ag alloys[J].Material Science and Technology,1999,15 (8):861-868.
  • 4[2]KAZANJIAN S M,WANG Ning.Creep behavior and microstructural stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag alloys[J].Mater Sci and Eng,1997,A234-236:571 -574.
  • 5[3]PANTELAKIS S,KYRSANIDI A.Creep resistance of aluminum alloys for the next generation supersonic civil aircrafts[J].Theoretical and Applied Fracture Mechanics,1999,31:31-39.
  • 6[4]POLMEAR I J,COUPER M J.Design and development of an experimental wrought aluminum alloy for use at elevated temperatures[J].Metall Trans,1988,19A (4):1027 -1035.
  • 7[5]POLMEAR I J,CHESTER R J.Abnormal age hardening in an Al-Cu-Mg alloy containing silver and lithium[J].Scripa Met,1989,23:1213-1217.
  • 8[6]WILLIAMS JAMES C,STARKE EDGAR A.Progress in structural material for aerospace systems[J].Acta mater.,2003,51:5775-5799.
  • 9[7]XIAO D H,WANG J N.Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy[J].Journal of Alloys and Compounds,2002,343:77 -81.
  • 10[8]XIAO H,WANG J N.Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy[J].Journal of Alloys and Compounds,2003,352:84-88.

共引文献53

同被引文献81

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部