期刊文献+

一种离子聚合物金属复合材料拉伸试验研究 被引量:2

Experimental Research on IPMC Material Tensile Samples
原文传递
导出
摘要 离子聚合物金属复合材料(IPMC)是一种新型的电致激活功能材料。为了研究IPMC的驱动特性,需要掌握其基本力学性能。通过化学镀方法,在一种与Nafion 117相似的离子交换膜表面镀金属铂(Pt),制备了IPMC拉伸试样;测定了不同含水量情况下,IPMC试样尺寸的变化;通过拉伸试验和扫描电镜(SEM)形貌观察,研究IPMC含水量与拉伸性能之间、含水量与弹性模量之间的变化关系。研究表明:在聚合物基底溶胀状态下,试样各向尺寸变化相同,IPMC的弹性模量随其含水量的增加而降低,呈幂指数趋势下降;针对表面金属(Pt)镀层厚度为5~20μm的IPMC试样,表层金属产生龟裂,且Pt元素在厚度方向上分布不均匀,若仍采用层合板理论对其弹性模量进行预测,将导致较大的误差。本文结果可为IPMC的力学建模、失效形式等研究提供有益的参考。 Ionic polymer metal composites (IPMC) are a new kind of electro-active material. It is necessary to study their essential mechanical properties for an understanding of their driving characteristics. The IPMC tensile samples are prepared by electroless plating, and an ionic exchange polymer which is similar to Nafion 117 is plated by platinum. The changes of sample geometrical dimensions are measured in different water contents. In this article, the relationships between the tensile capabilities, elastic modulus and water content of the sam- ples are investigated by tensile testing, and their sectional and surface morphology are analyzed by scanning electron microscope(SEM). The results show that: in swelling the changes of geometrical dimensions are identical in all directions; as the water content increases the elastic modulus decrease in the form of power series; the surface layer of the plating metal(Pt) is chapped when the thickness is 5-20μm, and the distribution of Pt contents on sample cross section is asymmetric; therefore, if the laminate theory is introduced in predicting the elastic modulus, it would obviously lead to errors in the calculated results. The research conclusions are of value for mechanical modeling and failure analysis on IPMC.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第5期966-971,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(90605003)
关键词 离子聚合物金属复合材料 弹性模量 拉伸试验 含水量 溶胀 IPMC elastic modulus tensile testing water content swelling
  • 相关文献

参考文献18

  • 1Colozza R A. Solid state aircraft phase Ⅱ final report[R]. Project NASS-03110,2005.
  • 2Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and smart material based vibration sensor/damper[J]. Smart Materials and Structures, 1992,1(2) : 172-179.
  • 3Shahipoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles[J]. Smart Materials and Structures, 1992, 1 (1) :91-94.
  • 4Oguro K, Kawami Y, Takenaka H. Bending of an ionconducting polymer film-electrode composite by an electric stimulus at low voltage[J]. Journal of Micromachine Society,1992(5) z27-30.
  • 5谭湘强,钟映春,杨宜民.IPMC人工肌肉的特性及其应用[J].高技术通讯,2002,12(1):50-52. 被引量:22
  • 6Shahinpoor M, Kim K J. Mass transfer induced hydraulic actuation in ionic polymer-metal composites[J]. Journal of Intelligent Material Systems and Structures, 2002,13 ( 6 ) : 369-376.
  • 7Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites[J]. Journal of Applied Physics, 2002,92(5):2899 2915.
  • 8Nemat-Nasser S, Wu Y X. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. Journal of Applied Physics,2003,93(9):5255-5266.
  • 9Nemat Nasser S, Zamani S. Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents[J]. Journal of Applied Physics,2006,100 (6) :064310.1-064310. 18.
  • 10Park I S, Kim S M, Kim K J. Mechanicaland thermal behavior of ionic polymer-metal composites: effects of electroded metals[J]. Smart Materials and Structures, 2007, 16(4): 1090-1097.

二级参考文献23

  • 1[1]Shahinpoor M, Bar-Cohen Y, Xue T, et al. Some experimental results on ion-exchange polymer-metal composites as biomimetic sensors and actuators. In: Proc. SPIE Smart Materials and Structures Conference, 1998, 3324
  • 2[2]Salehpoor K, Shahinpoor M, Razani A. Role of ion transport in dynamic sensing and actuation of ionic polymeric platinum composite artificial muscles. In: Proc. SPIE Smart Materials and Structures Conference, 1998, 3330
  • 3[3]Mojarrad M, Shahinpoor M. Biomimetic robotic propulsion using polymeric artificial muscles. In: Proceeding of the 1997 IEEE International Conference on Robotics and Automation. 1997, 2152
  • 4[4]Bar-Cohen Y, et al. Challenges to the transition of IPMC artificial muscle actuators to practical application. MRS Symposium on Electroactive Polymers, 1999, 1
  • 5Kothfra C S,Leo D T.Bandwidth characterization in the micropositioning of ionic polymer actuators.Journal of Intelligent Material Systems and Structures,2005,16(1):3-13.
  • 6凌道盛,徐兴.非线性有限元及程序.杭州:浙江大学出版社,2005.61-88.
  • 7Shahinpoor M.Microelectro-mechanics of ionic polymeric gels as artificial muscles for robotic applications.In:Proceeding of the IEEE Robotics & Automation Conf,1993,4:254-258.
  • 8Shahinpoor M.Continuum electro-mechanics of ionic polymeric gels as artificial muscles for robotic applicationsSmart Materials and structures,1994,3:357-372.
  • 9Shahinpoor M,Bar-Cohen Y.Some experimental results on ion-exchange polymer-metal composites as bio-mimetic sensor and actuators.In:Smart Materials and Structures Conference.America.1998.3324.
  • 10Salehpoor K,Shahinpoor M.Role of ion transport in dynamic sensing and actuation of ionic polymeric platinum composites artificial muscles.In:Smart Materials and Structures Conference,America,1998.3330.

共引文献28

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部