期刊文献+

基于小波包分解的手写体金融汉字识别

Handwritten Amount Chinese Characters Recognition Based on Wavelet Packet Decomposition
下载PDF
导出
摘要 本文提出一种基于小波包分解的手写体金融汉字识别算法。该算法首先对汉字图像进行小波包分解,利用基于节点子图像能量方差的准则选择适当的部分分解树;然后,将得到的子图像划分成多个局部窗口,计算局部窗口的能量值组成特征向量;再通过主成分分析(PCA)选择分类能力最强的一组特征,降低特征空间的维数;最后,用SVM多类分类方法进行分类判决。实验结果表明,该算法取得了较好的识别效果。 A handwritten amount Chinese characters recognition algorithm based on wavelet packet transform is proposed. Firstly, wavelet packet transformation is used to decompose the character images whose proper partial decomposition tree can be chosen based on the variance characterization of the energy function. Secondly, each sub-image is divided into several local windows whose energy values are calculated to combine the feature vectors. Thirdly, the PCA transform is ap plied to all the feature vectors in order to determine a few significant features to reduce the samples of SVM. Finally, multiclass SVM is used for classification. The efficiency of this method is proved by the experiments which effectively improves the recognition rate of the amount Chinese characters.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第6期40-43,共4页 Computer Engineering & Science
基金 湖北省科技攻关计划资助项目(2003BDST004)
关键词 小波包 能量函数 多分类支持向量机 金融汉字 wavelet packet decomposition energy function multi-class SVM amount Chinese character
  • 相关文献

参考文献9

  • 1王洪,汪同庆,刘建胜,朱永权,皇甫征声.基于小波包纹理分析的字体识别方法[J].光电工程,2002,29(S1):62-65. 被引量:5
  • 2甘俊英,梁宇.小波包分解在虹膜识别中的应用[J].计算机应用,2006,26(5):1006-1008. 被引量:4
  • 3Kim S C,Kang T J. Texture Classification and Segmentation Using Wavelet Packet Frame and Gaussian Mixture Model[J].Pattern Recognition, 2007,40(4) : 1207-1221.
  • 4孙廷奎.小波分析及其应用[M].北京:机械工业出版社,2005..
  • 5Coifman R R,Wickerhauser M V. Entropy-Based Algorithms for Best-Basis Selection[J]. IEEE Trans on Information Theory, 1992,38(2) : 713-718.
  • 6Duda R O,Hart P E,Stork D G.模式分类[M].北京:机械工业出版社,2003:94-96.
  • 7Vapnik VN.统计学习理论[M].第1版.许建华,张学工译.北京:电子工业出版社,2004.
  • 8陈增照,杨扬,何秀玲,喻莹,董才林.基于核聚类的SVM多类分类方法[J].计算机应用,2007,27(1):47-49. 被引量:11
  • 9Chang C C, Lin C J. LIBSVM: A Library for Support Vectorma-Chines[EB/OL]. [2004-10-02]. http: //www. csie. Ntu. edu. tw/-cjlin/libsvm.

二级参考文献22

  • 1甘俊英,梁宇.基于局部小波变换与奇异值分解的虹膜识别算法[J].计算机工程与应用,2006,42(6):92-95. 被引量:10
  • 2秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 3VAPNIK VN,张长工.统计学习理论[M].第1版.北京:电子工业出版社,2004.
  • 4JAIN A, BOLLE R, PANKANTI S. Biometrics Personal Identification in Networked Society[M]. 101 Philip D five, A ssinippi Park,Norwell, Massachusetts 02061 USA, Kluwer Academic Publishers,1999, 103 - 121.
  • 5DAUGMAN J. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, 15(11) : 1148 - 1161.
  • 6WOGGEN U. Optical properties of semiconductor quantum dots[M]. Germany: Springer, 1996. 179 - 185.
  • 7BOBLES WW, A human identification technique using image of the iris and wavelet transform[J]. IEEE Transaction on Signal Processing, 1998, 46(4): 1185 -1188.
  • 8KRICHEN E, MELLAKH MA, GARCIA-SALICETTI S, et al. Iris Identification Using Wavelet Packets[A]. Pattern Recognition, 17th International Conference on (ICPR'04) [C], 2004, 4:335 - 338.
  • 9SCHONBERG D, KIROVSKI D. Iris Compression for Cryptographically Secure Person Identification[A]. Data Compression Conference(DCC'04) [C], 2004. 459 -468.
  • 10SHEHATA M, EBERLEIN A, ABRAHAM F. IRIS: A Semi-Formal Approach for Detecting Requirements Interactions[A].11th IEEE International Conference and Worksh.op on the Engineering of Computer-Based Systems (ECBS'04) [C], 2004. 273 - 271.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部