期刊文献+

行波电渗微流体驱动理论模型与实验 被引量:5

Theoretical model and experiments for TWEO pumping microflow
下载PDF
导出
摘要 为了研究行波电渗(TWEO)微流体驱动,在封闭的微通道内建立了TWEO微流体驱动模型,并进行了仿真和实验研究。根据TWEO驱动原理,分别建立了封闭通道内TWEO微流体驱动电场及流场的数学模型,并对电场及流场问题进行了求解,流场的仿真结果说明了实验测量通道高度2/3处速度的合理性。最后,分析了实验和仿真结果并确定了容抗比例系数。实验及仿真结果表明:电导率分别为1.5 mS/m7、.7 mS/m1、6.9 S/m的KCl溶液的容抗比例系数分别为0.05、0.035、0.025,而且电导率与容抗比例系数呈线性关系。结果为进一步研究TWEO及其应用提供了理论基础及实验方法。 To explore Traveling Wave Electroosmotic (TWEO) pumping microflow, a TWEO pumping model is established in a closed microchannel, and simulation and experiments are presented. Based on the TWEO driving mechanism, the mathematic models of an electric field and a flow field in the closed microchannel are established respectively to solve the electric field and flow field problems. From the flow field simulation results, the measuring velocity on 2/3 of the microchannel height in experiments is proved to be reasonable, The experiment and simulation are undertaken to determine the capacitance impedance coefficients. The results show that for KCl solution with conductivities of 1.5 mS/m,7, 7 mS/m and 16.9 S/m, its capacitance impedance coefficients are 0.05, 0. 035 and 0. 025, respectively,and conductivities of the solution are proportional to the capacitance impedance coefficients linearly. The results can offer a theoretical and experimental base for further research and applications of the TWEO.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2009年第5期1093-1098,共6页 Optics and Precision Engineering
基金 高等学校学科创新引智计划资助项目(No.B07018)
关键词 行波电渗 理论模型 微流体驱动 仿真 traveling wave electroosmotic theoretical model pumping microflow simulation
  • 相关文献

参考文献13

二级参考文献34

共引文献37

同被引文献83

  • 1仲武,陈云飞.毛细管电渗流微泵的流型及驱动[J].机械工程学报,2006,42(2):22-26. 被引量:7
  • 2谢海波,傅新,杨华勇,陈虹.典型微管道流场数值模拟与Micro-PIV检测研究[J].机械工程学报,2006,42(5):32-38. 被引量:12
  • 3张鹏,左春柽,周德义.矩形微流道内电渗流影响因素的数值模拟[J].机械工程学报,2007,43(3):37-42. 被引量:4
  • 4姜洪源,闫宝森,杨胡坤,Ramos Antonio.交流电渗驱动机理及流速计算[J].中国机械工程,2007,18(14):1672-1675. 被引量:7
  • 5RAMOS A, MORGAN H, GREEN N G, et al. AC electrokinetics: a review of forces in microelectrode structure[J]. Journal of Physics: D, 1998, 31 (18): 2338-2353.
  • 6RAMOS A, GONZALEZ A, GREEN N G, et al. Pumping ofliquids with AC voltages applied to asymmetric pairs of microelectrodes [J]. Phys Rev: E, 2003, 67 (5): 056302-1-056302-11.
  • 7LOUCAIDES N, RAMOS A, GEORGHIOU G E. Novel systems for configurable AC electroosmotic pumping [J]. MicrofluidNanofluid, 2007, 3 (6): 709-714.
  • 8WANGYY, SUH YK, KANGS. A study on the slip velocity on a pair of asymmetric electrodes for AC-electroosmosis in a microchannel [J]. Journal of Mechanical Science and Technology, 2009, 23 (3): 874-884.
  • 9OLESEN L H, BRUUS H, AJDARI A. AC electrokinetic micropumps: the effect of geometrical confinement, faradaie current injection and nonlinear surface capacitance [J]. Phys Rev: E, 2006, 73 (5): 056313-1-056313-16.
  • 10CERVENKA P, PRIBYL M, SNITA D. Numerical study on AC electroosmosis in microfluidic channels [J]. Microelectronic Engineering, 2009, 86 (4/5/6) : 1333-1336.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部