期刊文献+

基于微粒群的约束优化 被引量:1

Constrained Optimization via Particle Swarm
下载PDF
导出
摘要 针对微粒群算法在处理约束优化问题时,难以兼顾约束与优化之间关系的问题,提出了一种泛学习微粒群算法(ULPSO),通过引入微粒不可行历史最优,使得微粒的学习更具多样性和有效性,增强了算法的搜索智能。通过对常用的13个基准函数的测试对比分析,表明该算法求解约束优化问题的计算具有快速性、稳定性和有效性。 In dealing with constrained optimization problems, particle swarm optimization(PSO) is difficult to balance the relationship between constrains and optimization. A ubiquitous-learning swarm optimization (ULPSO) was proposed in order to solve this problem. Via incorporating infeasible personal best for each particle, this algorithm makes the study of particles more diversity and efficiency, enhances search intelligence. Finally, it is applied to a set of 13 well-known benchmark functions, and the experimental results illustrate its computing speed, stability and efficiency.
作者 胡鹏 王猛
出处 《装备制造技术》 2009年第5期76-79,共4页 Equipment Manufacturing Technology
关键词 微粒群算法 约束优化 不可行历史最优 边界 学习 particle swarm optimization constrained optimization infeasible personal best boundary learn
  • 相关文献

参考文献9

  • 1王陵,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
  • 2Michalewicz Z., Dcholenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evol. Comput.1996,(4): 1-32.
  • 3Runarsson T.P., Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Trans. Evol. Comput. 1999,(7): 19-44.
  • 4C.A.C. Coello, R.L. Becerra, Efficient evolutionary optimization through the use of a cultural algorithm, Eng[J]. Optimiz. 2004,36 (2): 219- 236.
  • 5王勇.蔡自兴,周育人,肖赤心.约束优化进化算法研究及其进展[J]. Journal of Software, 2007,18( 11 ) : 2691-2706.
  • 6Toscano G., Coello Coello C.A.: A constralnt-handling mechanism for particle swarm optimization[A]. Proceedings of the 2004 Confess on Evolutionary Computation[C].Portland, USA : IEEE, 2004,1396-1403.
  • 7Xiaohui Hu and Russell Eberhart. Solving Constrained Nonlinear Opfi mization Problems with Particle Swarm Optimization[A]. In Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Infor matics[C]. (SCI 2002), volume 5. Orlando, USA, 2002.
  • 8Deb K. An efficient constraint handing method for genetic algorithms Computer Methods in Applied Mechanics and Engineering [J].2000, (186):311-338.
  • 9Michalewicz Z and Nazhiyath G. Genocop Ⅲ:A Co-evolutionary Algo fithm for Numerical Optimization Problems with Nonlinear Constraints [J]. Proe.of IEEE CEC,1995, ( 11):647--651.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部