期刊文献+

基于IMRAN的电站锅炉效率与NOx排放模型 被引量:7

An Efficiency and NOx Emissions Model for Power Station Boilers on Improved Minimal Resource Allocating Networks
下载PDF
导出
摘要 电站锅炉高效低NOx燃烧优化技术越来越受到人们的重视,而锅炉燃烧效率和NOx排放模型是高效低NOx燃烧优化的基础。从提高网络的泛化能力着手,对最小资源分配网络算法的隐节点删减策略进行改进,加入惩罚策略和合并策略,并把改进的MRAN算法应用到对电站锅炉NOx排放与效率的实时建模上。仿真结果表明,改进的MRAN算法除了具有一般MRAN算法的优点外,还具有比MRAN网络更加紧凑的结构。提出的网络算法具有多输出结构,可同时预测NOx排放与效率,适于用在电站锅炉的NOx排放与效率的燃烧实时整体优化中。 There have been considerable attractions to high efficiency and low NO, emissions combustion optimizing technology for power station boilers these years. High efficiency and low NOx emissions combustion optimization is based on boilers combustion efficiency and NO, emissions model. From the point of improving the generation capabilities, this paper improves the hidden nodes reducing strategies of MRAN by adding punishing and incorporating strategies, applies the improved algorithm to model NOx emissions and efficiency on line for a power station boiler. Simulation results show the improved model has more compact structure than MRAN except the general excellence. The improved model is multi-output and can predict NOx emissions and efficiency at the same time, and suitable for NOx emissions and efficiency globe optimizing on line for power plant boilers.
机构地区 河海大学 东南大学
出处 《锅炉技术》 北大核心 2009年第3期5-9,41,共6页 Boiler Technology
基金 国家教育部博士点基金(2050286041) 河海大学科技创新基金资助(2006406086)
关键词 最小资源分配网络 氮氧化物 锅炉效率 Minimal Resource Allocating Networks (MRAN) NOx boiler efficiency
  • 相关文献

参考文献6

二级参考文献19

  • 1赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京,南宁:清华大学出版社,广西科学技术出版社,1997.105-106.
  • 2周昊 朱洪波 曾庭华 等(Zhou Hao Zhu Hongbo Zeng Tinghua et al.)大型四角切圆燃烧锅炉NOx排放特性的神经网络模型(An artificial neural network model on NOx emission property of a high capacity tangentially firing boiler)[J]..
  • 3Max F J, Koch G., Schmidt W. Low NOx bituminious coal tangential firing system of the 750MW power station unit bexbachi [J]. EVT-BERICHT, 1998, 12.
  • 4Smith P J, Hill S C, Smoot L D. Theory for NO formation in turbulent coal flames,19th Symposium on Combustion[A]. The Combustion,Institute[C]. 1982, 1263-1270.
  • 5De Soete G G. Overall reaction rates of NO and N2 formation from fuel nitrogen. 15th symposium on combustion[A]. The Combustion Institute[C]. 1975, 1093-1102.
  • 6Field M A, Gill D E, Morgan B B, et al. Combustion of pulverised coal utilisation research association[J]. The Institute of Fuel,Leatherhead. 1967.
  • 7Pershing D W, Wendt J O L. Pulverised coal combustion:the influence of flame temperature and coal composition on thermal and fuel NOx[A]. 16th Symposium on Combustion[C]. The Combustion Institute, 1971, 389-399.
  • 8Bartok W, Sarofim A F. Fossil fuel combustion[J]. John Wiley and Sons Inc, New York, 1991.
  • 9Williams A, Takarada T, Toyoshima M, et al. A review of NOx formation and reduction mechanisms in combustion system, with particular reference to coal[J]. J. Inst. Energy , 1997, 70: 102-113.
  • 10J. M. ZURADA, Introduction to articificial neural systems [M]. West Publishing Cpompany, San Francisco, 1992.

共引文献155

同被引文献76

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部