期刊文献+

一种基于特征优化算法的磁共振脑组织分割方法

A MR Brain Image Segmentation Method Based on Feature Optimization Algorithm
下载PDF
导出
摘要 结合独立分量分析与支持向量机,提出一种基于特征优化算法的磁共振脑组织分割方法。首先,从图像中提取出灰度和纹理特征构成原始特征集;然后,利用独立分量分析技术对所提取的原始图像特征进行优化处理,提取其中的独立分量构成特征子集;最后,把训练样本与待分类样本都映射到特征子集所张成的独立空间中,利用特征子集对支持向量机分类器进行训练并对脑组织进行分类。实验结果表明,采用本研究的分割方法可以获得比其他相关方法更好的脑组织分割结果。 With combinaton of independent component analysis (ICA) and support vector machine (SVM), a method for MR brain image segmentation was presented based on feature optimization algorithm. The gray and texture features were extracted from MR brain images, which formed the original features set. Then ICA was used to process the original features set optimistically so that the independent componentcan can be extracted from the original features set to construct a features subset. Finally the samples both trained and unclassified were mapped to the independent space which was constructed by the features subset. The SVM classifier was trained using the features subset to classify the brain tissues. The experimental results showed that the proposed method has higher segmentation accuracy compared with other methods.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第3期345-350,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30770608) 上海市教委重点项目(06ZZ33) 上海市教委科研创新项目(09YZ216)
关键词 支持向量机 独立分量分析 特征优化 脑组织分割 support vector machine (SVM) independent component analysis (ICA) feature optimization brain tissue segmentation
  • 相关文献

参考文献15

  • 1Liew Alan Wee-Chung, Yah Hong. Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images [J]. Current Medical Imaging Reviews, 2006, 2(1) :1 - 13.
  • 2Daniel S, Tomas K. Brain tissue classification with automated generation of training data improved by deformable registration[ M ]. Berlin: Springer-Heidelberg, 2007.301 - 308.
  • 3Koen VL, Frederik M, Dirk V. A unifying framework for partial volume segmentation of brain MR images[J]. IEEE Trans on Medical Imaging, 2003, 22(1):105-119.
  • 4周永新,白净.用于MRI脑组织分割的自动模糊连接方法[J].中国生物医学工程学报,2006,25(4):411-416. 被引量:4
  • 5Nie Shengdong, Zhang Yingli. A fast and automatic segmentation method of MR brain images based on genetic fuzzy clustering algorithm [ A ]. In: IEEE, Engineering in Medicine and Biology [C]. Lyon: The Printing House Inc, 2007. 5628- 5632.
  • 6Christopher JC. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2( 1 ) : 121 - 167.
  • 7徐海祥,喻莉,朱光喜,张翔,田金文.基于支持向量机的磁共振脑组织图像分割[J].中国图象图形学报,2005,10(10):1275-1280. 被引量:25
  • 8郭磊,武优西,刘雪娜,颜威利,沈雪勤.基于主成份分析和支持向量机的MRI图像多目标分割[J].中国生物医学工程学报,2007,26(4):498-502. 被引量:3
  • 9(亩心)晓宇,刘洪.主分量分析和独立分量分析方法的比较研究[J].石油物探,2006,45(5):441-446. 被引量:5
  • 10盂凡辉.尿沉渣图像有形成分识别算法研究[D].北京:北京航空航天大学,2003.

二级参考文献47

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部