期刊文献+

快速核Foley-Sammon鉴别分析及其在人脸识别上的应用

Fast Kernel Foley-Sammon Discriminant Analysis with Application to Face Recognition
下载PDF
导出
摘要 核Foley-Sammon鉴别分析由于可以抽取得到原始样本的非线性正交特征,因此被广泛应用于模式识别的研究领域。但是该算法在具体求解每一个特征矢量过程中均需求解相应的广义特征方程,因此非常耗时。为了克服这一困难,提出了一种新的快速近似算法即核Foley-Sammon鉴别分析,有效地避免了多次求解广义特征方程。在ORL人脸数据库上的实验结果表明,该算法不仅在识别性能上优于核线性鉴别分析,而且在特征抽取速度上优于传统的核Foley-Sammon鉴别分析。 Kernel Foley-Sammon Discriminant Analysis (KFSDA) is extensively applied on the field of pattern recognition with the capacity of extracting nonlinear orthonormal features from original samples. But each eigenvector should be achieved by calculating the corresponding generalized eigenfunction with this algorithm, and it is very time-consuming. In order to overcome this problem, a fast algorithm of KFSDA named Fast Kernel Foley-Sammon Discriminant Analysis (FKFSDA) was proposed. Experimental results on the ORL face database demonstrate the proposed algorithm not only outperforms Kernel Linear Discriminant Analysis (KLDA) in recognition rates, but also outperforms conventional Foley-Sammon Discriminant Analysis in feature extraction speed.
出处 《计算机科学》 CSCD 北大核心 2009年第6期273-275,285,共4页 Computer Science
基金 国家自然科学基金(60572034) 江苏省自然科学基金(BK2004058) 江苏科技大学青年教师科研立项资助
关键词 核Foley-Sammon鉴别分析 特征抽取 人脸识别 Kernel Foley-Sammon discriminant analysis, Feature extraction, Face recognition
  • 相关文献

参考文献15

  • 1Fisher R. The use of multiple measures in taxonomic problems[J]. Ann. Eugenics. , 1936,7:79-188
  • 2Wilks S S. Mathematical Statistics[M]. New York:Wiley, 1962
  • 3Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs Fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans. Pattern Anal. Machine Intell, 1997, 19 (7): 711-720
  • 4Foley D H,Sammon J W Jr. An optimal set of discriminant vectors[J].IEEE Trans. Computers, 1975,24(3):281-289
  • 5Lu J, Platanintis K N, Venetsanopoulos A N. Face Recognition Using Kernel Direct Discriminant Analysis Algorithms[J].IEEE Transactions on Neural Networks, 2003,14 (1) : 117-125
  • 6Vapnik V N. The Nature of Statistical Learning Theory[M]. 2nd ed. New York..John Wiley and Sons, 1998
  • 7Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000, 12 ( 10 ) : 2385- 2404
  • 8甘俊英,张有为.模式识别中广义核函数Fisher最佳鉴别[J].模式识别与人工智能,2002,15(4):429-434. 被引量:24
  • 9Mika S, Ratseh G, Weston J, et al. Fisher discrimi-nant analysis with kernels[A]//Proceedings of IEEE International Workshop on Neural Networks for Singal Processing[C]. Madison, Wisconsin,August 1999:41-48
  • 10Muller K-R, Mika S, Ratsch G, et al. An introduction to kernel- based learning algorithms[J]. IEEE Trans. Neural Networks, 2001,12(2): 181-201

二级参考文献20

  • 1Wilks S S. Mathematical Statistics [M]. New York: Wiley,1962
  • 2Duda R, Hart P. Pattern Classification and Scene Analysis [M]. New York: Wiley, 1973
  • 3Belhumeur Peter N, Hespanha Joao P, Kriegam David J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 4Foley Donald H, Sammon John W, Jr. An optimal set of discriminant vectors [J]. IEEE Transactions on Computers,1975, 24(3): 281~289
  • 5Guo Yuefei, Shu Tingting, Yang Jingyu, et al. Feature extraction method based on the generalized fisher discriminant criterion and facial recognition [J]. Pattern Analysis and Application, 2001, 4(1): 61~66
  • 6Vapnik Vladimir N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995
  • 7Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000, 12 (10):2385 ~ 2404
  • 8Roth Volker, Steinhage Volker. Nonlinear discriminant analysis using kernel functions [A]. In: Solla S A, Leen T K, Muiller K-R, eds. Advance in Neural Information Processing Systems12 [C]. Cambridge, MA: MIT Press, 2000. 568~574
  • 9Mika Sebastian, Ratsch Gunnar, Weston Jason, et al. Fisher discriminant analysis with kernels [A]. In: Hu Y-H, Larsen J,Wilson E, eds. Neural Networks for Signal Processing IX [C]. Piscataway, NJ: IEEE Press, 1999. 41~48
  • 10Miller Klaus-Robert, Mika Sebastian, Ratsch Gunnar, et al. An introduction to kernel-based learning algorithms [J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部