摘要
Gene expression studies are important for revealing gene functions putatively involved in biological processes. We were interested in identifying differentially expressed genes during leaf development in rice. We combined the RNA arbitrarily primed-polymerase chain reaction (RAP.PCR) and dot blot hybridization methods to screen a rice leaf primordium cDNA library. Three developmental stages during vegetative growth were examined. The cDNA clones showing different hybridization patterns were further analyzed and verified. Here we demonstrate that the combination of RAP-PCR and dot blot hybridization could provide an efficient and relatively low-cost cDNA library screening approach to discover genes not previously known to be associated with leaf development in rice, We believe that the findings described here will help to elucidate the molecular mechanism(s) underlying the developmental processes of rice leaf
Gene expression studies are important for revealing gene functions putatively involved in biological processes. We were interested in identifying differentially expressed genes during leaf development in rice. We combined the RNA arbitrarily primed-polymerase chain reaction (RAP.PCR) and dot blot hybridization methods to screen a rice leaf primordium cDNA library. Three developmental stages during vegetative growth were examined. The cDNA clones showing different hybridization patterns were further analyzed and verified. Here we demonstrate that the combination of RAP-PCR and dot blot hybridization could provide an efficient and relatively low-cost cDNA library screening approach to discover genes not previously known to be associated with leaf development in rice, We believe that the findings described here will help to elucidate the molecular mechanism(s) underlying the developmental processes of rice leaf
基金
Supported by the Area of Excellence Grant on Plant and Fungal Biotechnologyfrom the University Grants Committee of the Hong Kong SAR Government