摘要
为了进一步研究广义非保守系统的广义拟变分原理,同时考虑到阻尼力和伴生力的影响,首先明确了广义非保守弹性力学系统的基本方程,然后应用变积方法,建立了广义非保守弹性动力学系统的两类变量的广义拟变分原理,并应用两类变量的广义拟余能原理求解了一个广义非保守弹性结构系统具体算例,该方法较好地处理了动力分析中的一些复杂问题,顺利求得问题的解析解.
To further research into generalized quasi-variational principles in generalized non-conservative systems, and to take account of the influence of both damping forces and follower forces, we put forward basic equations for generalized non-conservative elasto-dynamic systems. We then established generalized quasi-variational principles with two kinds of variables for generalized non-conservative elasto-dynamic systems by using of the variational inte- gral method. An example of a generalized non-conservative elasto-dynamie structural system was solved by applying the generalized quasi-complementary energy principle with two kinds of variables. It was shown that the method can better deal with some complicated problems in dynamic analysis, and an analytical solution can be successfully ob- tained.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2009年第5期495-500,共6页
Journal of Harbin Engineering University
基金
国家自然科学基金资助项目(10272034)
博士点基金资助项目(20060217020)
关键词
非保守系统
拟变分原理
弹性动力学
阻尼
伴生力
non-conservative system
quasi-variational principle
elasto-dynamics
damping
follower force