摘要
利用锥不动点定理证明了二阶Neumann边值问题:-(p(x)u′)′+q(x)u=g(x,u),x∈I,u′(0)=u′(1)=0,当p(x)≠1且q(x)≠0时多重正解的存在性.
This paper deals with the existence of single and multiple positive solutions to second order Neumann boundary value problems {-(p(x)u′)′+q(x)u=g(x,u),x∈I,u′(0)=u′(1)=0 when p(x)≠1, q(x)≠0 by means of the fixed point theorem in cones.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2009年第3期527-529,共3页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10571179)
教育部新世纪优秀人才支持项目基金(批准号:07-0386)
关键词
NEUMANN边值问题
正解
格林函数
紧连续
锥不动点定理
Neumann boundary value problem
positive solution
Green' s function
completely continuous
fixed point theorem