摘要
Nanosized long-persistent phosphors SrS:Eu^2+, Dy^3+ were prepared by the hydrothermal method.The samples were characterized by X-ray powder diffraction, transmission electron microscopy, and charge-coupled device spectrometry.The persistence characteristic was studied using the decay curves.The results showed that the emission intensity decreased sharply with temperature increasing, although the particle size increased.The S2-vacancies caused by oxidization served as shallow traps, and Dy3+ served as deep traps in SrS:Eu^2+, Dy^3+.The afterglow intensity of SrS:Eu^2+, Dy^3+ was higher than that of SrS:Eu2+ prepared at the same temperature.However, the minimization span of initial afterglow with temperature for the former sample was larger than that for the latter.Binary-doped phosphor decayed more slowly than the singly doped one.The afterglow of SrS:Eu^2+, Dy^3+ decayed more quickly with the increase of sintering temperature.
Nanosized long-persistent phosphors SrS:Eu^2+, Dy^3+ were prepared by the hydrothermal method.The samples were characterized by X-ray powder diffraction, transmission electron microscopy, and charge-coupled device spectrometry.The persistence characteristic was studied using the decay curves.The results showed that the emission intensity decreased sharply with temperature increasing, although the particle size increased.The S2-vacancies caused by oxidization served as shallow traps, and Dy3+ served as deep traps in SrS:Eu^2+, Dy^3+.The afterglow intensity of SrS:Eu^2+, Dy^3+ was higher than that of SrS:Eu2+ prepared at the same temperature.However, the minimization span of initial afterglow with temperature for the former sample was larger than that for the latter.Binary-doped phosphor decayed more slowly than the singly doped one.The afterglow of SrS:Eu^2+, Dy^3+ decayed more quickly with the increase of sintering temperature.
基金
supported by the National Natural Science Foundation of China (10774012 and 10434030)
Beijing Jiaotong University Program (2007XM048, 2006XM038)