摘要
从求解非线性方程的经典牛顿迭代法出发,构造了"牛顿类"迭代公式,其中非零参数λ任意选取时迭代均收敛,给出了收敛性定理和误差方程,证明了它至少具有三阶收敛速度,且只要参数λ选取恰当,则可进一步提高收敛速度,数值实验验证了其收敛速度。
To solve the nonlinear equation,a new " Newton Like" method based on the classical Newton method was proposed, which is always convergent when the nonzero parameter A is selected arbitrarily. The convergence theorem and error equation were presented,which proved that there are at least third - order convergent. If the parameter is chosen properly,the convergence rate will be improved further. Numerical experiments verify its speed.
出处
《武汉理工大学学报(信息与管理工程版)》
CAS
2009年第3期398-400,共3页
Journal of Wuhan University of Technology:Information & Management Engineering
基金
湖北省科技厅科研基金资助项目(B200534004)
关键词
非线性方程
“牛顿类”迭代法
收敛阶
误差方程
nonlinear equation
" Newton Like" iteration method
order of convergence
error equation