期刊文献+

求解复杂优化问题的双层多种群粒子群优化算法 被引量:1

A Bi-level multi-population particle swarm optimization algorithm for solving complicated optimization problems
下载PDF
导出
摘要 为解决粒子群优化算法存在的易早熟和精度低问题,提出了一种双层多种群粒子群优化算法。此算法采用上下两层,即下层N个基础种群和上层一个精英种群。各个基础种群相互独立进化,并从精英种群中得到优良信息指导自己的进化。上层精英种群首先通过接受各基础种群的当前最优粒子来更新自己的粒子集合,然后执行自适应变异操作,最后随机地向每一个基础种群输送出本次进化后的一个最优粒子来改进其下一轮搜索。该算法的并行双进化机制增加了群体的随机性和多样性,提高了全局搜索能力和收敛精度。实例仿真表明该算法具有较好的性能,尤其对于复杂多峰函数优化,成功率显著提高。 To overcome the PSO algorithm's drawbacks of easily premature converging and low convergence precision, the paper proposes a new improved bi-level multi population particle swarm optimization (PSO) algorithm. This algorithm ineludes two levels: the lower level of N basic swarms and the upper level of elite swarm. These basic swarms independently evolve and obtain the advanced information to supervise their evolution. The elite swarm first accepts the current optimal particles from each basic swarm to update its particle set, then executes an adaptive mutation, and randomly outputs one of the current optimal particles to each swarm to improve its next search. The parallel dual evolving mechanism in this algorithm enhances the swarm randomicity and diversity, and improves the global search ability and converging precision. The simulations show that this algorithm has better performance, and particularly its success rate is significally increased for the multi-peak function.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第5期519-524,共6页 Chinese High Technology Letters
基金 863计划(2006AA01A103)资助项目
关键词 粒子群优化(PSO) 双层多种群 精英种群 自适应变异 particle swarm optimization (PSO), bi-level multi-population, elite swarm, adaptive mutation
  • 相关文献

参考文献14

  • 1雷德明,吴智铭.基于粒子群优化的多目标作业车间调度[J].上海交通大学学报,2007,41(10):1657-1657. 被引量:13
  • 2徐杰,黄德先.基于混合粒子群算法的多目标车辆路径研究[J].计算机集成制造系统,2007,13(3):573-579. 被引量:31
  • 3Zhong W H, Zhang J, Chen W N. A novel discrete particle swarm optimization to solve traveling salesman problem. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007. 3283-3287.
  • 4黄艳新,周春光,邹淑雪,王岩.一种基于类覆盖和粒子群优化的模糊神经网络系统[J].计算机研究与发展,2004,41(7):1053-1061. 被引量:2
  • 5Lei D M. A Pareto archive particle swarm optimization for multi-objective job shop scheduling. Computers & Industrial Engineering,2008,54(4) :960-971.
  • 6Yang Z S, Shao C, Li G Z. Multi-objective optimization for EGCS using improved PSO algorithm. In: Proceedings of the American Control Conference, New York, USA, 2007. 5059-5063.
  • 7Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Sym- posium on Micro Machine and Human Science, Nagoya, Japan, 1995. 39-43.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, Piseataway,NJ,USA, 1995. 4. 1942-1948.
  • 9Jeffery K C,Horng S M,John W. A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers and Operations Research, 2003,30 (7) : 1087-1102.
  • 10Yao J, Kharma N, Peter G. A multi-population genetic algorithm for robust and fast ellipse detection. Pattern Analysis & Applications ,2005,8( 1 ) : 149-162.

二级参考文献59

  • 1肖健梅,李军军,王锡淮.求解车辆路径问题的改进微粒群优化算法[J].计算机集成制造系统,2005,11(4):577-581. 被引量:49
  • 2刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 3陆琳,谭清美.一类随机需求VRP的混合粒子群算法研究[J].系统工程与电子技术,2006,28(2):244-247. 被引量:15
  • 4刘勇 康立山 陈毓屏.非数值并行算法—遗传算法[M].北京:科学出版社,1998..
  • 5Adman Cannon,Lenore Cowen.Approximation algorithms for the class cover problem.Annals of Mathematics and Artificial Intelligence,2004,40(3):215~223
  • 6Carey E Priebe,David J Marchette,Jason DeVinney,et al.Classification using class cover catch digraphs.Journal of Classification,2003,20(1):3~23
  • 7Abhay K Parekh.Analysis of a greedy heuristic for finding small dominating sets in graphs.Information Processing Letters,1991,39(5):237~240
  • 8张智星,孙春在,水谷英二.神经-模糊和软计算.西安:西安交通大学出版社,2000(J S R Jang,C T Sun,E Mizutani.Neuro-Fuzzy and Soft Computing(in Chinese).Xi'an:Xi'an Jiaotong University Press,2000)
  • 9Ludmila I Kuncheva.How good are fuzzy if-then classifiers? IEEE Trans on Systems,Man,and Cybernetics,Part B:Cybernetics,2000,30(4):501~509
  • 10Roger Jang.Neuro-fuzzy modeling:Architecture,analyses and applications:[Ph D dissertation].Berkeley,California:EECS Department,University of California at Berkeley,1992

共引文献449

同被引文献20

  • 1赵波,郭创新,张鹏翔,曹一家.基于分布式协同粒子群优化算法的电力系统无功优化[J].中国电机工程学报,2005,25(21):1-7. 被引量:68
  • 2Eberhart R,Kennedy J A. A new optimizer using particle swarm theory[A].Nagoya,Japan:IEEE,1995.39-43.
  • 3Ho S Y,Lin H S,Liauh W H. OPSO:Orthogonal particle swarm optimization and its application to task assignment prob-lems[J].IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2008,(02):288-298.
  • 4Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J].IEEE Trans Syst Man Cyber B Cybern,2004,(02):997-1006.doi:10.1109/TSMCB.2003.818557.
  • 5Ahmed A A E,L T Germano,Z C Antonio. A hybrid particle swarm optimization applied to loss power minimization[J].IEEE Transactions on Power Systems,2005,(02):859-866.doi:10.1109/TPWRS.2005.846049.
  • 6Ling S H,HHC Iu,KY Chan. Hybrid particle swarm opti-mization with wavelet mutation and its industrial applications[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2008,(03):743-763.
  • 7Liang J J,Qin A K,Suganthan P N. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,(03):281-295.doi:10.1109/TEVC.2005.857610.
  • 8Hao Wu,Geng J P,Rong H J. An improved comprehen-sive learning particle swarm optimization and its application to the semiautomatic design of antennas[J].IEEE Transactions on Antennas and Propagation,2009,(10):3018-3028.
  • 9Zhan Z H,Zhang J,Li Y. Adaptive particle swarm opti-mization[J].IEEE Transactions on Systems Man and Cyber-netics-Part B:Cybernetics,2009,(06):1362-1380.
  • 10Kennedy J,Mendes R. Neighborhood topologies in fully in-formed and best-of-neighborhood particle swarms[J].IEEE Trans Syst Man CybernC Appl Rev,2006,(04):515-519.

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部