期刊文献+

同体呼气相和吸气相肺部高分辨率CT体积图像的配准 被引量:2

Intra-subject Image Registration between Expiration and Inspiration Lung Volumes of High Resolution CT
原文传递
导出
摘要 目的实现同一个体屏住呼吸状态下呼气相与吸气相的肺部高分辨率CT体积图像配准。方法采集3个被试者两个屏住呼吸状态下的胸部高分辨率CT序列,共3对。利用序列分割算法提取肺组织,并分开存储左右两肺。对单侧肺的呼气与吸气图像进行配准。首先,基于解剖标志面寻找全局仿射变换参数,用此变换重采样呼气相体积图像;其次,利用"Demons"算法对两体积图像进行非刚性配准。结果两肺的轮廓及内部结构均获得较好的配准效果。配准前,两图像的平均体积重合度为0.7982,经全局仿射变换后提高到0.8936,经"Demons"非刚性配准后增至0.9544。均方根误差值平均下降率为:19.83%(全局仿射变换之后),49.43%(Demons非刚性配准之后)。结论本文所采用的同体肺部图像的配准方法可以有效地配准两个大形变肺部体积图像,为进一步分析肺的呼吸功能奠定了良好的基础。 Objective To register two breath-hold lung volumes image from one subject with deep expiration and deep inspiration. Methods Three pairs of thoracic high resolution CT serial from three subjects were collected under two breath-hold respiration stages. The lung parenchyma of every serial was segmented using the serial segmentation algorithm. Left and right lungs were stored separately. Expiration and inspiration volume images of single lung were registered. Firstly, affine transformation parameters were found based on the anatomic flag surfaces and expiration image volume was re-sampled with affine transformation. Secondly, "Demons" algorithm was employed to register two image volumes non-rigidly. Results Two lung surfaces and the inner structures have a nice registration. The average volume overlap of two images before registration is 0. 7982. After global affine transformation, it improves to 0. 8936. After "Demons", it is up to 0. 9544. The average descending percentage of root mean square errors is 19.83% (after the global affine transformation) and 49.43% (after the "Demons" non-rigid registration). Conclusion The intra-subject registration between two lung image volumes with large deformations described here has an effective registration result. It offers a good base to analyze the lung respiration function.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2009年第3期198-204,共7页 Space Medicine & Medical Engineering
基金 国家自然科学基金(60771077)
关键词 高分辨率CT 同体图像配准 仿射变换 非刚性配准 high resolution CT intra-subject image registration affine transformation non-rigid registration lung
  • 相关文献

参考文献14

  • 1Sarrut D, Boldea V, Miguet S. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans [ J ]. Med Phys, 2006, 33 (3) : 605-617.
  • 2Sarrut D, Boldea V, Badel JN, et al. Non-rigid registration method to assess the reproducibility of breath-holding with ABC in lung cancer [ J ]. International Journal of Radiation Oncology Biology Physics, 2004,60( S1 ) : 606-607.
  • 3LI Fan,CHANG Wenchen, Reinhacrdt JM, et al. Evaluation and application of 3D lung warping and registration model using HRCT images [ C ]. Proceedings of SPIE, Medical Lmagimg Diego,CA, 2001: 234-243.
  • 4Matsopoulos GK, Pantelis A, Asvestas PA, et al. Thoracic non-rigid registration combining self-organizing maps and radial basis functions[J]. Medical Image Analysis, 2005, (9) : 237-254.
  • 5Margrit Betke, Harrison Hong, Deborah Thomas,et al. Landmark detection in the chest and registration of lung surfaces with an application to nodule registration [ J ]. Medical hnage Analysis, 2003, (7) : 265-281.
  • 6LU Weiguo,CHEN Mingli, Olivera GH,et al. Fast free-form deformable registration via calculus of variations [ J ]. Phys Med Biol, 2004,49(10) :3067-3087.
  • 7LI Baojun,Christensen GE,Hoffman EA,et al. Establishing a normative atlas of the human lung [ J ]. Acad Radiol, 2003 (10) :255-265.
  • 8周颖玥,冯焕清,李传富,刘鹏,刘伟.一种从胸HRCT图像序列分割肺的自动化方法[J].北京生物医学工程,2008,27(1):6-10. 被引量:7
  • 9Armato SG, Sensakovic WF. Automated lung segmention for thoracic CT: impact on computer-aided diagnosis [J]. Acad Radiol, 2004, 11 (9) : 1011-1021.
  • 10Armato SG, Giger ML, Moran C J, et al. Automated detection of pulmonary nodules in helical computed tomography images of the thorax [ C ]. In: Hanson KM, eds. Medical Imaging 1998 : Imaging Processing, Proc. SPIE 3338. San Diego, 1998 : 916-919.

二级参考文献8

共引文献6

同被引文献33

  • 1Akira M,Toyokawa K,Inoue Y. Quantitative CT in chronic obstructive pulmonary disease:inspiratory and expiratory assessment[J].American Journal of Roentgenology,2009,(01):267-272.
  • 2Blahut RE. Algebraic codes for data transmission[M].Cambridge:Cambridge University Press,2003.38-60.
  • 3Klein S,Staring M,Murphy K. elastix:a toolbox for intensity based medical image registration[J].IEEE Transactions on Medical Imaging,2010,(01):196-205.
  • 4Davatzikos. Measuring biological shape using geometry-based shape transformations[J].Image and Vision Computing,2001.63-74.
  • 5Christian Gaster,Hans-Peter Volz,Stefan Kiebel. Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research[J].Neuroimage,1999.107-113.
  • 6Kybic J,Unser M. Fast parametric elastic image registration[J].IEEE Transactions on Image Processing,2003,(11):1427-1442.
  • 7Krucker JF,LeCarpentier GL,Fowlkes JB. Rapid elastic image registration for 3-D ultrasound[J].IEEE Transactions on Medical Imaging,2002,(11):1384-1394.
  • 8Rueckert D,Sonoda L,Hayes C. Nonrigid registration using free-form deformations:application to breast MR images[J].IEEE Transactions on Medical Imaging,1999,(08):712-721.
  • 9Christian JA,Partridge M,Nioutsikou E. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-smal cel lung cancer[J].Radiotherapy and Oncology,2005.271-277.
  • 10Lavrenkov K,Singh S,Christian JA. Ef ective avoidance of a functional SPECT-perfused lung using intensity modulated radiotherapy (IMRT) for non-smal cel lung cancer (NSCLC):an update of a planning study[J].Radiotherapy and Oncology,2009.349-352.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部