期刊文献+

广义回归神经网络的改进及在预测控制中的应用 被引量:9

The Generalized Regression Neural Network and Its Application to Predictive Control
下载PDF
导出
摘要 针对广义回归网络的模式层单元数目与样本数量成正比的问题,提出了基于相似度衡量的模糊均值聚类的样本精简方法.针对广义回归网络在时变环境下难以确定平滑因子,自适应能力弱的缺点,提出了一种基于贡献率的选择优化方案.仿真结果表明,改进后的GRNN有较快的处理速度和较强的自适应能力,能够在实际应用中很好地辨识较为复杂的非线性时变系统. For the defect that pattern layer neurons are proportional to the number of the training samples, the method of fuzzy means clustering based on similarity index to decrease samples is proposed. For the defect that it is hard to determine the smoothing parameter in time-varying conditions, the adaptive optimizing strategy based on contributing ratio is proposed. The simulation results show that the improved GRNN has fast solving speed and good adaptability. It can approach complex nonlinear time-varying systems well.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第6期32-35,共4页 Microelectronics & Computer
关键词 广义回归神经网络 模糊均值聚类 平滑因子 系统辨识 预测控制 GRNN fuzzy means clustering smoothing parameter system identification predictive control
  • 相关文献

参考文献8

  • 1王科俊,李国斌,李殿璞.非线性动态系统辨识的神经网络结构和可行性研究[J].哈尔滨工程大学学报,1997,18(2):52-57. 被引量:2
  • 2宋宜斌,王培进.基于径向基函数神经网络的非线性模型辨识[J].计算机工程,2004,30(5):142-143. 被引量:17
  • 3孟凡华.一种新型动态回归神经网络结构在非线性系统辨识中研究[C]//中国人工智能学会第10届全国学术年会论文集.北京,2003:278-282.
  • 4覃磊,刘文斌,周康.基于神经网络组的空间目标识别的信息融合方法[J].微电子学与计算机,2008,25(8):117-120. 被引量:7
  • 5Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991,2(6) : 568 - 576.
  • 6Hafizah Husain, Marzuki Khalid, Rubiyah Yousof. Automatic clustering of generalized regression neural network by similarity index based fuzzy C - means clustering [ C ]// 2004 IEEE Region 10 Conference (TENCON). Malaysia, 2004. 302 - 305.
  • 7Specht D F, Romsdahl H. Experience with adaptive probabilistic neural networks and adaptive general regression neural networks [C]// Proceedings of the IEEE World Congress on Computational Intelligence. USA: Ortando, 1994: 1203- 1208.
  • 8Teo Lian Seng, Marzuki Khalid, Rubiyah Yusof. Adaptive GRNN for the modeling of dynamic plants[ C] // Proceedings of the 2002 IEEE International Symposium on Intelligent Control. USA, New York, 2002:217-222.

二级参考文献10

  • 1王璇,李春升,周荫清.多传感器信息融合技术[J].北京航空航天大学学报,1994,20(4):402-406. 被引量:23
  • 2廖晓昕.细胞神经网络的数学理论(Ⅰ)[J].中国科学(A辑),1994,24(9):902-910. 被引量:13
  • 3李宏,徐晖,安玮,孙仲康.基于人工神经网络与证据理论相结合的信息融合空间点目标识别方法研究[J].信息与控制,1997,26(2):137-155. 被引量:8
  • 4彭聃龄.普通心理学[M].北京:北京师范大学出版社,2002.439-440.
  • 5刘同明.多传感器数据融合及应用[M].北京:国防工业出版社,1998.
  • 6Xinghuo Yu, Onder M Ere, Okyay Kaynak. A general backpropagation algorithm for feedforward neural networks learning [ J ]. IEEE Transactions on neural networks, 2002,13(1) :251 - 254.
  • 7Thierry Denoeux. A neural network classifier based on dempstersharer theory [ J ]. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2000,6(31).131 - 150.
  • 8Hcheng Jiao, Jin Pan, Yangwang Fang. Multiwavelet neural network and its approximation properties[J ]. IEEE Transactions on neural Networks, 2001,12(5):1060- 1066.
  • 9Liang Xue - Bin. A recurrent neural network for nonlinear continuously differen-tiable optimization over a compact convex subset [ J ]. IEEE Transactions on Neural Networks, 2001,12(6):1487- 1490.
  • 10Saini L M, Soni M K. Artificial neural network based peak load forecasting using levenberg- marquardt and quasi - newton methods[J ]. Generation, Transmission and Distribution, IEE Proceedings, 2002,149(5) :578 - 584.

共引文献23

同被引文献100

引证文献9

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部