摘要
考虑带启动时间和关闭时间(休假延迟)的多级适应性休假排队系统的离去过程.运用全概率分解,更新过程理论和Laplace-Stieltjes变换,讨论了在(0,t]中服务完顾客的平均数以及其渐近展开,揭示了离去过程的随机分解特性,并指出了以往文献中相应结论的错误.
This paper studies the departure process of M^x/G/1 queue with adaptive multistage vacation and server set-up, close-down time. By using direct probability decomposition, renewal theory and the Laplace-Stieltjes transform, we discuss the expected number of departures occurring during the time interval (0, t) and its asymptotic expansion. Furthermore, the stochastic decomposition of departure process and the inaccuracy in previous references are discovered.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2009年第2期159-165,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(70871084)
教育部高校博士点专项研究基金(200806360001)
西南财经大学科研基金
关键词
多级适应性休假
关闭期
启动期
随机分解
渐近展开
adaptive multistage vacation
close-down time
set-up time
stochastic decomposition
asymptotic expansion