摘要
非对易空间的量子效应是出现在弦的尺度下的一种物理效应,近年来对于它的研究引起了物理学界极大的兴趣和关注。本文从Moyal-Weyl乘法出发,考虑了坐标-坐标的非对易性,利用非对易空间量子力学的代数关系(Bopp变换),给出了非对易空间中的泡利方程。在重新定义了消灭产生算符的基础上,在粒子数算符和自旋算符的共同本征态下,计算了非对易空间中电子在电磁场中运动的能级。
The effect of noncommutative space is a new physics effect in the string scale. The theoretic problems of noncommutative space have attract physicist's attention. Considering the coordinates-coordinates' non-commutation,from Moyal-Weyl multiplication and Bopp shift,the Pauli equation in non-commutative space are given by using the algebra relation in quantum mechanics. Based on redefine the annihilation operator and creation operator, the common eigenstates of number operator and spin operator are redefined, the energy levels of electron in electromagnetic field in non-commutative space are obtained.
出处
《陕西理工学院学报(自然科学版)》
2009年第1期66-72,共7页
Journal of Shananxi University of Technology:Natural Science Edition
基金
国家自然科学基金资助项目(10447005)
关键词
非对易空间
非对易量子力学
Bopp变换
泡利方程
能级
non-commutative space ( NC space)
non-commutative quantum mechanic (NCQM)
Bopp's shift
Pauli equation
energy level