摘要
阐述了基于概率密度演化理论进行多自由度结构非线性随机动力反应分析的基本思想。采用随机过程的正交分解或物理系统建模的思想,实现随机激励的随机函数表述。对由此获得的随机状态方程采用概率密度演化理论求解,可以获得随机动力系统反应的概率密度函数及其演化。以某剪切型框架结构的非线性随机地震反应分析为例,说明了所发展方法的可行性和有效性。
The basic idea of stochastic response analysis of multi-degree-of-freedom nonlinear structures is outlined. Employing the orthogonal decomposition or physical modeling, the stochastic excitation can be represented by random combination of a set of deterministic functions. The probability density evolution theory can then be applied to the resulted stochastic dynamical system and the instantaneous probability density function and its evolution can thus be obtained. Stochastic response analysis of a shear frame subjected to random ground motions is exemplified, showing the feasibility and validity of the proposed method.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2009年第3期312-317,共6页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金创新研究群体科学基金(50621062)
教育部新世纪优秀人才支持计划联合资助项目
关键词
随机动力系统
非线性
概率密度演化
概率守恒
正交分解
Stochastic dynamical system
nonlinear
probability density evolution
principle of preservation of probability
orthogonal decomposition