期刊文献+

非线性随机动力系统的概率密度演化分析 被引量:11

Probability density evolution analysis of nonlinear dynamical systems
下载PDF
导出
摘要 阐述了基于概率密度演化理论进行多自由度结构非线性随机动力反应分析的基本思想。采用随机过程的正交分解或物理系统建模的思想,实现随机激励的随机函数表述。对由此获得的随机状态方程采用概率密度演化理论求解,可以获得随机动力系统反应的概率密度函数及其演化。以某剪切型框架结构的非线性随机地震反应分析为例,说明了所发展方法的可行性和有效性。 The basic idea of stochastic response analysis of multi-degree-of-freedom nonlinear structures is outlined. Employing the orthogonal decomposition or physical modeling, the stochastic excitation can be represented by random combination of a set of deterministic functions. The probability density evolution theory can then be applied to the resulted stochastic dynamical system and the instantaneous probability density function and its evolution can thus be obtained. Stochastic response analysis of a shear frame subjected to random ground motions is exemplified, showing the feasibility and validity of the proposed method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第3期312-317,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金创新研究群体科学基金(50621062) 教育部新世纪优秀人才支持计划联合资助项目
关键词 随机动力系统 非线性 概率密度演化 概率守恒 正交分解 Stochastic dynamical system nonlinear probability density evolution principle of preservation of probability orthogonal decomposition
  • 相关文献

参考文献20

  • 1LIN Y K,CAI G Q.Probabilistic Structural Dynamics:Advanced Theory and Applications[M].McGraw-Hill,Inc.,New York,1995.
  • 2朱位秋.随机振动[M].北京:科学出版社,1998..
  • 3LUTES L D,SARKANI S.Random Vibrations:Analysis of Structural and Mechanical Systems[M].Elsevier,Amsterdam,2004.
  • 4SCHU(E)LLER G I (Ed.).A state-of-the-art report on computational stochastic mechanics[J].Probabilistic Engineering Mechanics,1997,12(4):197-321.
  • 5ZHU W Q.Nonlinear stochastic dynamics and control in Hamiltonian formulation[J].Applied Mechanics Reviews,2006,59:230-248.
  • 6李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 7LI J,CHEN J B.The principle of preservation of probability and the generalized density evolution equation[J].Structural Safety,2008,30:65-77.
  • 8CHEN J B,LI J.A note on the principle of preservation of probability and probability density evolution equation[J].Probabilistic Engineering Mechanics,2009,24(1):27-42.
  • 9CHEN J B,LI J.Dynamic response and reliability analysis of nonlinear stochastic structures[J].Proba bilistic Engineering Mechanics,2005,20(1):33-44.
  • 10LI J,CHEN J B,FAN W L.The equivalent extreme-value event and evaluation of the structural system reliability[J].Structural Safety,2007,29:112-131.

二级参考文献29

  • 1Kleiber M, Hien TD. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Chishcester: John Wiley & Sons, 1992
  • 2Ghanem R, Spanos PD. Stochastic Finite Element: A Spectral Approach. Berlin: Springer-Verlag, 1991
  • 3Ding GY, Li J. The nonlinear response emulation analysis of the stochastic structure subjected to the earthquake excitation. In: Proceedings of the 12th World Earthquake Engineering Conference, New Zealand, 2000
  • 4Klosner JM, Haber SF, Voltz P. Response of non-linear systems with parameter uncertainties. Int J Non-Linear Mechanics, 1992, 27 (4): 547~563
  • 5Micaletti RC, Cakmak AP, Nielsen SRK, et al. A solution method for linear and geometrically nonlinear MDOF systems with random properties subject to random excitation.Probabilistic Engineering Mechanics, 1998, 13(2): 85~95
  • 6Bernard P. Stochastic linearization: What is available and what is not. Computers & Structures, 1998, 67:9~18
  • 7Liu WK, Belytschko T, Mani A. Probability finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 1986, 56:61~81
  • 8Teigen JG, Frangopol DM, Sture S, et al. Probabilistic FEM nonlinear concrete structures. Ⅰ: Theory. Journal of Structural Engineering, 1991, 117 (9): 2674~2689
  • 9Frangopol DM, Lee YH, Willam KJ. Nonlinear finite element reliability analysis of concrete. Journal of Engineering Mechanics, 1996, 122 (12): 1174~1182
  • 10Huang CT. On the Dynamic Response of Nonlinear Uncertain Systems. [Ph D Thesis]. California Institute of Technology, 1996

共引文献218

同被引文献68

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部