期刊文献+

基于改进FCM的水下目标识别设计 被引量:1

Design on Underwater Target Identification Based on an Improved FCM Algorithm
下载PDF
导出
摘要 水下目标识别在鱼雷水下武器反对抗中占有重要的地位,模糊聚类与神经网络相结合,广泛应用在模式识别的各个领域;在FCM算法中,考虑到样本矢量中各维特征对目标分类的不同影响,提出一种基于特征加权的改进FCM算法,使数据更有效的分类;将改进的FCM算法与改进RBF神经网络结合起来建模,充分利用二者的优点,运用到水下目标识别的分类中,得到满意的结果,提高了鱼雷跟踪定位目标的可靠性。 Underwater targets identified in anti-submarine torpedoes, occupy an important position. Fuzzy Clustering and neural network integration, has been widely used in various fields of pattern recognition. In FCM algorithm, taking into account samples of the different effects of vector-dimensional characteristics to the target classification, introduce a algorithm based on weight to improve FCM, making the data classification more effective. Making the improved FCM algorithm and the improved RBF neural network combined with modeling, taking full use of the advantages of the two, bringing to the classification of underwater target identification, get a satisfied results.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第5期954-956,共3页 Computer Measurement &Control
基金 国家水下信息处理与控制重点实验室基金项目(9140C2304100807)
关键词 模糊C-均值聚类 特征加权 RBF神经网络 监督学习 自组织 FCM feature weight RBF neural network supervised learning self-organizing
  • 相关文献

参考文献6

二级参考文献25

共引文献58

同被引文献29

  • 1张丽梅,乔立山,陈松灿.基于张量模式的特征提取及分类器设计综述[J].山东大学学报(工学版),2009,39(1):6-14. 被引量:5
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3付海艳,张诚一.基于FCM和粗糙集属性重要度理论的综合评价系统[J].计算机应用,2006,26(6):1479-1481. 被引量:12
  • 4李洁,孙吉贵.现在聚类算法研究[M].北京:高等教育出版社,2006.
  • 5ErarClUe H Ruspini. A new approach to clustering[ J ]. Information mad Control, 1969, 15(1) :22 -32.
  • 6Bezdek J C. Cluster Validity with fuzzy sets [ J ]. Jourrml of Cyber- netics,1974, 13:58 -73.
  • 7Cannon It, Dave J, Berxtek J C. Eflqeient implementation of the fuzz- y e-mamas clustering algorithm [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986,8:248 -255.
  • 8Jerome Cutrona, Noel Bonnet, Michel Harbin, et al. Advances in the segmentation of multi-component mieromaalytieal in'mges[ J]. Ultra- microscopy. 2005,103 : 141 - 152.
  • 9Daniel Graves, Witold Pedrycz. Kernel-based fuzzyclustering and fuzzy clustering: Aeomparative experimental study [ J ]. Fuzzy Sets and Systems ,2010,161:522 - 545.
  • 10Li Liang-qun ,Ji Hong-bing,Gao Xin-bo. Maximumen tropy fuzzy clustering with application to real-time target tracking[ J]. Signal Processing, 2006,86:3432 - 3447.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部