期刊文献+

基于RASTA和SVM的话音激活检测算法 被引量:1

Voice Activity Detection Algorithm Based on RASTA and SVM
下载PDF
导出
摘要 提出了一种基于RASTA滤波技术的多维语音特征和支持向量机分类的VAD算法,适用于低信噪比情况下的话音检测。算法在语音特征选择上使用了RASTA-PLP滤波方法,提取出了多维倒谱参数,并将其作为特征向量输入给支持向量机进行分类检测。算法所提取的特征是基于人类听觉感知系统特性的,因此具有普遍意义和稳定性,多维特征与支持向量机的结合则提高了语音分类判决的可靠性。实验结果表明,算法在低信噪比环境下对话音和噪声均具有较高的检出率。 A VAD algorithm based on RASTA-filter multi-dimensional speech feature and Support Vector Machine is presented. It applies to the speech detection under the low SNR conditions. In the selection of speech, it introduces the RASTA-PLP method, which abstracts muhi-dimensional cepstral parameters, and then those parameters are given to SVM as feature vectors to make decision. Because the feature is based on the character of human hearing perception, it is general and robust. Multi-dimensional feature combines with SVM, the algorithm improves the reliability of speech classification and decision. The experimental results indicate that the algorithm has high correct detection rate of speech and noise under the low SNR conditions.
出处 《微计算机信息》 2009年第18期231-232,227,共3页 Control & Automation
关键词 RASTA 支持向量机(SVM) 话音激活检测(VAD) RASTA support vector machine (SVM) voice activity detection (VAD)
  • 相关文献

参考文献6

  • 1J. Ramirez, J. M. Gorriz and J. C. Segura.Voice Activity Detection.Fundamentals and speech recognition system robustness[M].// Michael Grimm,Kristian Kroschel.Robust speech recognition and understanding.Vienna:I-Tech,2007:460-481.
  • 2J. Sohn,Nam Soo Kim,Wonuong Sung.A statistical model-based voice activity detection [J].IEEE Signal Processing Letters,Vol.16, No. 1,1-3.1999
  • 3Hynek Hermansky,Nelson Morgan.RASTA Processing of Speech [J].IEEEE Transactions on Speech and Audio Processing,Vol.2,No. 4,578-589.1994
  • 4邢慧强,王国宇.SVM用于基于块划分特征提取的图像分类[J].微计算机信息,2006,22(05S):210-212. 被引量:12
  • 5Christopher J.C. Burges.A tutorial on support vector machines for pattern recognition [M].Data Mining and Knowledge Discovery, 2,121-167,Kluwer Boston.1998
  • 6Chih-Chung Chang and Chih-Jen Lin, LIBSVM : A library for support vector machines[EB/OL], 2001. Software available at http:// www.csie.ntu.edu.tw/-cjlin/libsvm.

二级参考文献10

  • 1王卫东,平西建,丁益洪.立体足迹重压面提取与描述[J].微计算机信息,2005,21(09X):103-104. 被引量:4
  • 2Y. Rui, T.S. Huang, S.F. Chang, “Image Retrieval: Past, Present, And Future” [A], Proceedings International Symposium on Multimedia Information Processing[C], 1997.
  • 3Colombo C, Bimbo AD, Pala P. Semantics in visual information retrieval[J]. IEEE Multimedia, 1999,6(3):38-53.
  • 4Ying Wu. Color, Edge and Texture[Z].ECE510-Computer Vision Notes Series 3.
  • 5A.K. JAIN, M.N. MURTY and P.J. FLYNN, Data Clustering: A Review [J], ACM Computing Surveys, Vol. 31, No. 3, September 1999.
  • 6Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20: 273-297.
  • 7Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection[A]. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C], New York: IEEE, 1997, 130-136.
  • 8Joachims T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features[A]. In: Proceedings of the 10th European Conference on Machine Learning[C], 1998.
  • 9Dumais S, Platt J, Heckerman D, Sahami M. Inductive Learning Algorithms and Representations for Text Categorization[A]. In: Proceedings of the 7th International Conference on Information and Knowledge Management[C], 1998.
  • 10C.-W. Hsu, C.-C. Chang, C.-J. Lin. A Practical Guide to Support Vector Classification.[Z]. Department of Computer Science and Information Engineering. National Talwan University.

共引文献11

同被引文献6

  • 1Hanan Ahincay, Miibeccel Demirekler Comparison of different objective functions for optimal linear combination of classifiers for speaker identifrcation [C]. Salt Lake City,ICASSP2001, 2001,125-128.
  • 2Haizhou Li, Bin Ma, Chin-Hui Lee. A Vector Space Modeling Approach to Spoken Language Identification [C]. IEEE Trans. on Audio, Speech and Language Processing, Vol 15, No. 1, 2007, 271-284.
  • 3L. I. Kuncheva, Ensemble Diversity Measures and Their Application to Thinning [J]. Pattern Recognition, vol.34, 2005, 49-62.
  • 4Francesco Ricci,David W. Aha. Eorror Correcting Output Codes for local Learners[J]. chenitz Germany. April 1998,21-24.
  • 5吴成东,杜崇峰,杨丽英.基于误差修正码的支持向量机大类别分类方法[J].沈阳建筑工程学院学报(自然科学版),2004,20(1):66-70. 被引量:7
  • 6刘志刚,李德仁,秦前清,史文中.支持向量机在多类分类问题中的推广[J].计算机工程与应用,2004,40(7):10-13. 被引量:150

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部