期刊文献+

一类BAM神经网络的全局指数稳定性

Global Exponential Stability of a Class of BAM Neural Networks
下载PDF
导出
摘要 利用变参数方法和不等式技巧,研究了一类BAM神经网络的动力学特性,得到了能保证其平衡解唯一性和全局指数稳定性的条件,并且此条件与时滞无关. The stability property of bidirectional associate memory (BAM) neural networks with timevarying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique,the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.
作者 周庆华
出处 《肇庆学院学报》 2009年第2期8-11,共4页 Journal of Zhaoqing University
基金 肇庆学院青年科学研究基金资助项目(0825)
关键词 双边联想记忆 指数稳定 变时滞 耗散 bidirectional associate memory exponential stability time-varying delay diffusion
  • 相关文献

参考文献1

二级参考文献6

  • 1Morita,M.Associative memory with non-monotone dynamica[].Neural Networks.1993
  • 2Forti,M.On global asymptotic stability of a class of nonlinear systems arising in neural networks theory,J[].Differential Equations.1994
  • 3Cao,D. J.Global exponential stability of Hopfield neural networks[].International Journal of Systems Science.2001
  • 4Amemiya,T.On the stability of non-linearly interconnected systems, Int[].Journal of Controlled Release.1981
  • 5Kelly,D. G.Stability in contractive nonlinear neural networks[].IEEE Transactions on Biomedical Engineering.1990
  • 6王林山,徐道义.Hopfield型时滞神经网络的稳定性分析[J].应用数学和力学,2002,23(1):59-64. 被引量:36

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部