摘要
为研究连续函数列{fi}的动力性状和极限函数厂的动力性状之间的关系,引入强一致收敛的概念,在函数列{fi}强一致收敛于厂的条件下,证明了函数列{fi}的极小性,拓扑传递性,拓扑弱混合性,拓扑混合性,都可以遗传到f上;并且还得出函数列{fi}的Li-Yorke混沌集(非游荡集)和f的Li-Yorke混沌集(非游荡集)之间的包含关系。最后得出结论:通过对函数列{fi}的动力性状的研究,可以刻画出厂的动力性状。
In order to investigate the relationship between a sequence of continuous functions {fi} and its limit function f on dynamical behavior. Introducing the concept of strong uniform convergence is introduced. The minimality, transitivity, weak mixing, and mixing possessed by {fi} that can be inherited to fare proved, as well as the inclusion relationship between Li-Yorke's chaos (non-wandering) set of {fi} andfis gained under the condition of a sequence of continuous functions {fi} strong converges uniformly toil The conclusion is the dynamical behavior of the limit function f can be described through investigating a sequence of continuous functions {fi}.
基金
陕西省自然科学基金资助项目(SJ08A24)
关键词
强一致收敛性
极小映射
拓扑传递的
LI-YORKE混沌
非游荡集
拓扑弱混合
拓扑混合
strong uniform convergence
minimal mapping
topological transitivity
Li-Yorke's chaos
non-wandering set
topological weak mixing
topological mixing.