期刊文献+

基于平均差异度的数字图书馆个性化推荐算法研究 被引量:6

Personalized Recommendation Algorithm for Digital Library Based on Average Difference Degree
原文传递
导出
摘要 针对用户评分数据极端稀疏情况下传统个性化推荐算法的不足,提出基于平均差异度的个性化推荐算法,该算法通过计算用户对项目评分之间的平均差异度来预测用户对未评分项目的评分,从而产生高质量的推荐。实验结果表明,该算法可以有效地提高数字图书馆个性化推荐系统的可扩展性及推荐准确度。 Against the extremely sparscl user rating data with traditional personalized recommendation algorithm, an personalized recommendation algorithm is proposed based on the average difference degree, by calculating the average difference between the item ratings for users who rate both, so as to produce high-quality recommend result. The experimental results demonstrate that the algorithm can effectively improve scalability and accuracy of the digital library of personalized recommendation system.
出处 《图书情报工作》 CSSCI 北大核心 2009年第11期119-122,共4页 Library and Information Service
关键词 数字图书馆 个性化推荐 平均差异度 digital library personalized recommendation average difference degree
  • 相关文献

参考文献8

  • 1Femandez L, Sanchez J A, Model : Personal spaces in a digital library universe. ACM DL, 2003 : 222 - 233.
  • 2Resniek P, Iaeovou N, Suehak M,et al. Grouplens :An open architecture for colla-borative filtering of netnews//Proeeedings of the ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994 : 175 - 186.
  • 3Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative fihering//Cooper G F, Moral S, Shenoy P P. Uncertainty in artificial intelligence: Proceedings of the Fourteenth Conference, July 24-26, 1998, University of Wisconsin, Madison, Wisconsin, USA. San Francisco : Morgan Kaufmann.
  • 4Pennock D M,Horvitz E. Collaborative? filtering by personality diagnosis:A hybrid memory and model-based approach//Dean T L. IJCAI-99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, Stockholm, Sweden, July 31-August 6, 1999:473 - 480.
  • 5Weiss S M, Indurkhya N. Lightweight collaborative? filtering method for binary encoded data//Raedt L d, Siebes A. Principles of Data Mining and Knowledge Discovery: 5th European Conference, PKDD 2001, Freiburg, Germany, September 3-5, 2001 : proceedings. Berlin: Springer:484 -491.
  • 6Sarwar B, Karypis G, Konstan J, et al. Recommender systems for large-scale e-commerce:scalable neighborhood formation using clustering//Proceedings of 5th International Conference on Computer and Information Technology, 27-28 December 2002, Dhaka, Bangladesh. Dhaka: East West University.
  • 7Sarwar B, Karypis G, Konstan J, et al. hem-based collaborative filtering recommendation algorithms//Proceedings of the 10th International World Wide Web Conference,2001:285 -295.
  • 8Herlocker J, Konstan J, Terveen Let al. Evaluating collaborative filtering recomm-ender systems. ACM Transactions on Information Systems ,2004,22( 1 ) :5 - 53.

同被引文献89

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部