期刊文献+

基于支持向量机的企业赊销风险评估模型 被引量:1

Study on Credit Sales Risk Assessing Model Based on Support Vector Machine
下载PDF
导出
摘要 结合赊销风险的特征,提出将"赊销风险度"作为新的赊销风险度量标准,在定义赊销风险度的基础上,将企业赊销风险划分为5个等级,并将支持向量机(SVM)引入赊销风险评价,建立了基于SVM的企业赊销风险评价模型。实证结果表明,该模型有效且可行。 According to the nature of credit sales risk, this paper puts forward credit risk degree to measure the credit sales risk. Based on the credit risk degree, the risk of sale on credit is divided into five grades and a credit risk assessing model based on SVM is established. Results show that the proposed model is feasible and accurate for dealing with the risk of sale on credit.
作者 吴玉萍
出处 《软科学》 CSSCI 北大核心 2009年第6期130-134,共5页 Soft Science
基金 国家自然科学基金项目(70872010)
关键词 赊销风险度 客户信用 支持向量机 风险评价 credit risk degree clients' credit support vector machine(SVM) risk assessing
  • 相关文献

参考文献10

  • 1Kingsman B G. The Effect of Payment Rules on Ordering and Stock - holding Purchasing [ J ]. Opl Res See, 1983,34 ( 11 ) : 1085 - 1098.
  • 2Martin D. Early Warning of Bank Failure: A Logit Regression Approach[J]. Journal of Banking and Finance, 1977, 1 (3) :249 - 276.
  • 3薛锋,柯孔林.粗糙集-神经网络系统在商业银行贷款五级分类中的应用[J].系统工程理论与实践,2008,28(1):40-45. 被引量:29
  • 4Erkki K L. Predicting a Corporate Credit Analyst's Risk Estimate by Logistic and Linear Models [ J ]. International Review of Financial Analysis, 1999,8 ( 2 ) : 97 - 121.
  • 5Michael B G. A Comparative Anatomy of Credit Risk Models [ J ]. Journal of Banking & Finance,2000,6 (24) : 119 - 149.
  • 6Vapnik V N. The Nature of Statistical Learning Theory[ M]. NY: Springer - Verlag, 1995.
  • 7Lorena AC, Carvalho CP. Protein Cellular Localization Prediction with Support Vector Machines and Decision Trees [ J]. Computers in Biology and Medicine, 2007(2) :389 -442.
  • 8Hsu C. BSVM 2.06 [ EB/OL]. http ://www. csie. ntu. edu. tw/- cjlin/bsvm/index. html,2002 - 06 - 15.
  • 9Chang C. LIBSVM Version2.83 [ EB/OL]. http://www. csie. ntu. edu. tw/- cjlin/libsvm/,2001 - 03 - 15.
  • 10Keerthi SS. Efficient Tuning of SVM Hyper Parameters Using Radius Margin Bound and herative Algorithms [ J ]. IEEE Transactions on Neural Networks, 2002 (5) :1225 -1229.

二级参考文献10

  • 1Altman E I, et al. Zeta analysis: A new model to identity bankruptcy risk of corporations[ J]. Journal of Banking and Finance, 1977, 1(1) :29- 54.
  • 2Martin D. Early warning of bank failure: A logit regression approach[ J]. Journal of Banking and Finance, 1977, 1 (3):249- 276.
  • 3Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy[ J]. Journal of Accounting Research, 1980, 18 (1):109- 131.
  • 4Altman E I, Marco G, Varettl F. Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience) [J]. Journal of Banking and Finance, 1994,18(3):505- 529.
  • 5Coats P, Pant L. Recognizing financial distress patterns using a neural network tool[ J]. Financial Management, 1993,22(3):142- 155.
  • 6Dan M C, Mark G R. A comparative analysis of current credit risk models[J]. Journal of Banking and Finance 2000,24( 1 ) : 59 - 117.
  • 7Dimitras A I, Slowinski R, Susmaga R. Business failure prediction using rough sets[J]. European Journal of Operational Research, 1999,114(2) :263 - 280.
  • 8Ahn B S, Cho S, Kim C. The integrated methodology of rough set theory and artificial neural network for business failure prediction [J]. Expert Systems with Applications,2000,18(2) :65 - 74.
  • 9王春峰,万海晖,张维.基于神经网络技术的商业银行信用风险评估[J].系统工程理论与实践,1999,19(9):24-32. 被引量:193
  • 10陶志,许宝栋,汪定伟,李冉.基于遗传算法的粗糙集知识约简方法[J].系统工程,2003,21(4):116-122. 被引量:71

共引文献28

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部