期刊文献+

TC4深筒形件超塑预成形模具型面设计及变摩擦厚度控制 被引量:1

Preforming-die Design and Friction Changing to Control the Thickness Distribution of TC4 Deep Cylinder by Superplastic Forming
下载PDF
导出
摘要 以正反向超塑成形厚度均匀的TC4钛合金深筒形件为背景(厚度精度要求1.6mm±0.2mm),设计了多种预成形模形状,采用MSC.MARC有限元模拟研究了不同形状的预成形模对深筒形件侧壁厚度分布的影响,并分析了预成形模和终成形模的表面摩擦系数分别对成形件壁厚分布的影响,提出了模具型面变摩擦控制厚度分布的方法。结果表明:预成形模对压边部分环形带区域和筒形件底部区域的局部预减薄,对最终侧壁的厚度分布有非常大的改善。同时,合理地增大预成形模的表面摩擦能显著增加预成形的局部减薄作用,对于提高工件最终壁厚分布均匀性有利。减小终成形模的摩擦,可以使板料整体变形均匀化,壁厚分布趋于均匀。根据有限元分析结果,对模具表面进行处理,并通过正反向超塑成形实验制得TC4钛合金深筒形件,其厚度分布满足1.6mm±0.2mm。 Based on the direct-reverse superplastic forming TC4 deep cylinder with uniform thickness (thickness accuracy: 1.6mm±0.2mm ), different shapes of preforming-die were designed and the in- fluence of the shape on the thickness distribution of cylinder was investigated using MSC. MARC. And also the influence on final thickness distribution of surface friction of preforming die and forming die was analyzed. The results show that the thinning of the blank near the periphery and the bottom of deep cylinder benefits to the uniform thickness of the side wall. And higher friction coefficient of preforming die can efficiently reduce the thickness of the regions which need to be thinned, results in a more uniform final thickness distribution along the component. Lower friction coefficient of forming die can make the sheet tend to integral formation, also results in uniform thickness distribution. According to the results of the FEM, the surface of performing die and forming die was treated and the aerospace TC4 deep cylinder was fabricated successfully by direct-reverse superplastic forming, the thickness of the cylinder meet the need of 1.6mm±0.2mm.
出处 《材料工程》 EI CAS CSCD 北大核心 2009年第6期51-55,共5页 Journal of Materials Engineering
关键词 预成形模具设计 TC4钛合金 正反向超塑成形 厚度分布 摩擦 FEM preforming die design TC4 titanium direct reverse superplastic forming thickness distribution friction FEM
  • 相关文献

参考文献10

  • 1BONET J, GIL A, WOOD R D, et al. Simulating superplastic forming [J]. Comput J Methods Appl Mech Engrg, 2006, 195: 6580-6603.
  • 2NAZZAL M, KHRAISHEH M. Finite element modeling of superplastic forming in the presenee of back pressure [J]. Mat Sci Forum, 2007, 551-552: 257-262.
  • 3WANG G C, FU M W. Maximum m superplastieity deformation for Ti-6Al-4V titanium alloy [J]. J Mater Proc Tech, 2007, 192 -193:555-560.
  • 4ZHANG K F, WANG G F, WU D Z, et al. Research on the controlling of the thickness distribution in superplastic forming [J]. J Mater Proc Tech, 2004, 151: 54-57.
  • 5XING H L, ZHANG K F, WANG Z R. A preform design method for sheet superplastic bulging with finite element modeling [J]. J Mater Proc Tech, 2004,151: 284-288.
  • 6王中阳,王国峰,赖小明,张凯锋.控制厚度分布的正反向超塑胀形的有限元分析[J].材料科学与工艺,2004,12(3):279-282. 被引量:11
  • 7芮玉龙,张益华,陈明和,左大平.半球形Al-Mg-Sc合金超塑胀形壁厚分布的有限元分析[J].模具工业,2006,32(9):20-23. 被引量:4
  • 8TAO J, KEAVEY M A. Finite element simulation for superplastic forming using a non-Newtonian viscous thick section element [J]. J Mater Proc Tech, 2004, 147: 111-120.
  • 9CHEN Y, KIBBLE K, HALL R, et al. Numerical analysis of superplastic blow forming of Ti-6Al-4V alloys [J]. Materials and Design, 2001, 22: 679-685.
  • 10LI G Y, TAN M J, LIEW K M. Three-dimensional modeling and simulation of superplastic forming[J]. J Mater Proc Tech, 2004, 150: 76-83.

二级参考文献10

  • 1王中阳,王国峰,赖小明,张凯锋.控制厚度分布的正反向超塑胀形的有限元分析[J].材料科学与工艺,2004,12(3):279-282. 被引量:11
  • 2HUANG A, LOWE A, CARDEWHALL M J. Experimental validation of sheet thickness optimization for superplastic forming of engineering structures[ J ]. J Mater Process Technol, 2001, 112:136 - 143.
  • 3LEE S. Thickness distribution in a superplastically formed rectangular pan under plane-strain conditions[J]. J Mater Process Technol,1997, 65:59 -64.
  • 4LEE K S, HUH H. Numerical simulation of the superplastic moving die forming process with a modified membrane finite element method [ J ]. J Mater Process Technol, 2001, 113:754-760.
  • 5LEEYS, LEESY, LEEJ H. A study on the process to control the cavity and the thickness distribution of superplastically formed parts [ J ]. J Mater Process Technol, 2001, 112:114-120.
  • 6XING H L, ZHANG K F, WANG Z R. Study on optimal mode of superplastic deformation [ J ]. J Mater Process Technol, 1994, 44:29 - 34.
  • 7ZHANG K F, WANG Z R, LAI X M, et al. Design in superplastic forming process by rigid visco - plastic shell FEM[J]. Mater Sci Forum, 1997, 243:735 -738.
  • 8吴诗淳.金属塑性变形理论[M].北京:国防工业出版社,1997.
  • 9PRASED K D V, YARLAGADDA.Finite element analysis of high strain rate superplastic forming(SPF) of Al-Ti alloys[J]. Journal of Materials Processirg Technology, 2002, 130: 469-476.
  • 10ZHANGK F,WANG F. Research on the controlling of the thickness distribution in superplastic forming[J].Journal of Materials Processing Technology, 2004, 151: 54-57.

共引文献10

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部