期刊文献+

基于矩阵奇异值理论的颤振分析新方法 被引量:3

New Type of Flutter Solution Based on Matrix Singularity
原文传递
导出
摘要 根据颤振分析的基本概念,提出了一类基于矩阵奇异值理论的颤振分析新方法。该方法的特点是,以计算颤振矩阵最小奇异值或条件数的倒数来直接搜索颤振临界点。证明了这两个指标在颤振临界点处的等价性。根据指标在颤振临界点附近取极小值的特点,编制了相应的算法,在确定颤振临界点时无需计算颤振特征根,避免了"窜支"问题,从而减少了人工干预,提高了计算自动化程度。数值算例结果表明,采用该方法计算得到的颤振临界速度和颤振频率与p-k法计算结果的精度相当,且两个指标对应的计算结果一致,验证了其等价性。 A new type of flutter solution based on matrix singularity is presented as a combination of the concepts of flutter and matrix analysis theories. A unique property of this method is just using the minimum singular value or inverse condition number of the flutter matrix as singularity indicators to determine the flutter boundary. These two indicators are proven to be equivalent right at the flutter point. Associated algorithm is developed for flutter solution with these indicators simply by frequency sweeping approach without solving flutter eigenvalues, which is more efficient with improvement in automation, thus requiring less human intervention. Numerical examples show that these indicators give the same flutter results as those solved by the classical p-k method, and the equivalence of these indicators is also demonstrated.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第6期985-989,共5页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10672135) 教育部"新世纪优秀人才支持计划"(NCET-04-0965)
关键词 颤振 颤振矩阵 颤振行列式 最小奇异值 条件数倒数 flutter flutter matrix flutter determinant minimum singular value inverse condition number
  • 相关文献

参考文献16

二级参考文献35

共引文献46

同被引文献32

  • 1谷迎松,杨智春,王巍.一类基于颤振行列式的颤振分析新方法[J].航空动力学报,2009,24(4):815-818. 被引量:2
  • 2邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38. 被引量:238
  • 3管德.气动弹性力学手册[M].北京:航空工业出版社,1994:240-251.
  • 4Dowell E H. Aeroelasticity of plates and shells [ M ]. Leyden, The Netherlands : Noordhoff International, 1975.
  • 5Fung Y C. An Introduction to the theory of aeroelasticity [M]. New York: John Wiley & Sons Inc, 1955.
  • 6Lee I, Cho M H. Flutter supersonic flow [ C ] analysis of composite panels in AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 31 st. Long Beach, CA,1990:1540 - 1550.
  • 7Pidaparti R M V, Yang H T Y. Supersonic flutter analysis of composite plates and shells [ J ]. AIAA Journal, 1993,31 : 1109 - 1117.
  • 8Olson M D. Finite elements applied to panel flutter [ J ]. AIAA Journal, 1967,5 : 2267 - 2270.
  • 9Olson M D. Some flutter solutions using finite elements [ J ]. AIAA Journal, 1970,8 : 747 -752.
  • 10Mei C. A finite-element approach for nonlinear panel flutter [J]. AIAAJournal, 1977,15: 1107-1110.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部