期刊文献+

含环路布局和运动副轴线方位特征的运动链拓扑结构描述 被引量:9

Topology of Kinematic Chains with Loops and Orientation of Joints Axes
下载PDF
导出
摘要 构造一种含环路布局、构件类型、运动副类型和运动副轴线方位信息的运动链的拓扑特征矩阵。构件的类型构成特定的环路布局,运动副的类型及其轴线的方位配置决定运动的状态特征,多副构件是联系环路间的桥梁。以运动链构成的独立环路为基础构建特征矩阵的行数,运动链的构件数目构建特征矩阵的列数;以独立环路的旋向确定构件及其排序;以代表运动副类型的符号或数字表达构件及环路间的连接关系;以同一构件上两个运动副的相对轴线方位描述运动副的方位特征。构造的运动链特征矩阵为(2l+2)×n,而单环运动链为3×n矩阵。实例表明,该特征矩阵可以描述各类运动链,与传统n×n拓扑矩阵相比,结构大大简化,而且拓扑信息量多。该矩阵特别便于由特征矩阵构造对应的机构简图,同时也为计算机辅助运动学和动力学建模提供了一种便捷途径。 A topological characteristics matrix with information of loops, types of links and joints, and orientations of joints is proposed. Loops are formed according to the kinds of links (binary or multi-joint link), and the moving space of the kinematic chains are determined on the basis of types of joints and their orientations. The multi-joint links set up the connecting among loops. The rows of the matrix are designed based on the independent loops, and the columns on the numbers of links n, the links dements in the matrix are ordered according to the direction of independent loops, the joints are expressed by prescribing letter or number, the orientation of joint is defined as the axes between two pairs of same link. The topological characteristic matrix is (21+2)×n, and it is 3×n matrix for single loop kinematic chains. Examples show that all kinds of kinematic chains can be presented by the matrix. The matrix provides more topological information of kinematic chains with fewer elements. The matrix makes it easier to construct the corresponding structural sketch from the matrix elements, and it also provides an easy way for computer-aided kinematic and dynamic modeling.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第6期34-40,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(50875038) 机器人学国家重点实验室开放基金(RLO200804)资助项目
关键词 运动链 拓扑特征矩阵 环路布局 运动副轴线方位 Kinematic chains Topological characteristic matrix Loop structure Joint orientation
  • 相关文献

参考文献10

  • 1HWANG W M, HWANG Y W. Computer-aided structural synthesis of planar kinematic chains with simple joints [J]. Mech. Mach. Theory, 1992, 27(2): 189-199.
  • 2SHIN J K, KRISHNAMURTY S. Development of a standard code for colored graphs and its application to kinematic chains [J]. Trans. of ASME J. Mech. Design, 1994, 116(1): 189-196.
  • 3CHU J K, CAO W Q. Identification of isomorphism among kinematic chains and inversions using link's adjacent-chain-table [J]. Mech. Mach. Theory, 1994, 29(1): 53-58.
  • 4RAO A C, VARADA R D. Application of the hamming number technique to detect isomorphism among kinematic chains and inversions[J]. Mech. Math. Theory, 1991, 26(1): 55-75.
  • 5YAN H S, HWANG W M. A method for the identification of planar linkage chains[J]. Trans. of ASME J. of Mech. Trans. Auto Design, 1983, 105 (4): 658-662.
  • 6I FANG W E, FREUDENSTEIN F. The stratified representation of mechanisms[J]. Trans. of ASME J. Mech. Design, I990, 112(4): 514-519.
  • 7MRUTHYUNJAYA T S, BALASUBRAMANZAN H R. In quest of a reliable and efficient computational test for detection of isomorphism in kinematic chains[J]. Mech. Mach. Theory, 1987, 22 (2): 131-140.
  • 8李树军,宋桂秋,杜立群,张国忠.用拓扑特性矩阵辨识运动链的同构体及机架变换研究[J].机械工程学报,2002,38(1):149-153. 被引量:13
  • 9LI S J. Computer-aided structure synthesis of spatial kinematic chains[J]. Mech. Mach. Theory, 1990, 25 (6): 645-653.
  • 10王德伦,戴建生.变胞机构及其综合的理论基础[J].机械工程学报,2007,43(8):32-42. 被引量:75

二级参考文献35

共引文献83

同被引文献109

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部