期刊文献+

基于聚类的高光谱图像无损压缩 被引量:7

Lossless Coding for Hyperspectral Images Based on Spectral Cluster
下载PDF
导出
摘要 高光谱海量数据的有效压缩成为遥感技术发展中需要迫切解决的问题。该文提出了一种基于聚类的高光谱图像无损压缩算法。针对高光谱图像不同频谱波段间相关性不同的特点,根据相邻波段相关性大小进行波段分组。由于高光谱图像波段数量较多,采用自适应波段选择算法对高光谱图像进行降维,以获取信息量较大的部分波段,利用 k 均值算法对降维后的波段谱矢量进行聚类。采用多波段预测的方案对各组中的波段进行预测,对于各个分类中的每个像素,分别选取与其空间相邻的已编码的部分同类点进行训练,从而获得当前像素的谱间最优预测系数。对 AVIRIS 型高光谱图像的实验结果表明,该算法可显著降低压缩后的平均比特率。 The request for efficient compression of hyperspectral images becomes pressing. A cluster-based lossless compression algorithm for hyperspectral images is presented. Because the spectral correlation differs in different bands, spectral band grouping algorithm is introduced to divide hyperspectral images into groups according to the correlation between each adjacent bands. The important bands which contain large useful information can be determined by using the adaptive band selection algorithm, on which k-means clustering is carried out according to the spectral vectors. The current band is predicted by using several preceding bands. For each pixel which belongs to a certain cluster, some causal neighboring pixels which have been coded are trained to get the optimal predictive coefficients. The reference bands are compressed by JPEG-LS standard while the final predictive errors are coded by Golomb-Rice. Experimental results show that the proposed methods produce competitive results when compared with other state-of-the-art algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第6期1271-1274,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60572135) 国防科技大学优秀研究生创新基金资助课题
关键词 高光谱图像 无损压缩 波段分组 谱向聚类 Hyperspectral image Lossless compression Band grouping Spectral cluster
  • 相关文献

参考文献11

  • 1苏令华,李纲,衣同胜,万建伟.一种稳健的高光谱图像压缩方法[J].光学精密工程,2007,15(10):1609-1615. 被引量:17
  • 2Mielikainen J and Toivanen P. Clustered DPCM for the lossless compression of hyperspectral images [J]. IEEE Trans.on Geoscience and Remote Sensing, 2003, 41(12): 2943-2946.
  • 3Rizzo F, Carpentieri B, and Motta G, et al.. Low-complexity lossless compression of hyperspectral imagery via linear prediction [J]. IEEE Signal Processing Letters, 2005, 12(2): 138-141.
  • 4Jain S K and Adjeroh D A. Edge-based prediction for lossless compression of hyperspectral images [C]. Data compression conference, Snowbird, USA, 2007: 153-162.
  • 5Zhang J and Liu G Z. An efficient reordering prediction- based lossless compression algorithm for hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 283-287.
  • 6Dragotti P L, Poggi G, and Ragozini A R P. Compression of multispectral images by three-dimensional SPIHT algorithm [J]. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(1): 416-428.
  • 7柴焱,计文平,沈兰荪.一种基于混合整型变换和3D-SPIHT的高光谱图像嵌入式无损压缩方法[J].电子学报,2007,35(9):1770-1773. 被引量:6
  • 8Rao A K and Bhargava S. Multispectral data compression using bidirectional interband prediction [J]. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34(2): 385-397.
  • 9刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 10孙蕾,罗建书.基于多波段谱间预测的高光谱图像无损压缩算法[J].电子与信息学报,2007,29(12):2876-2879. 被引量:14

二级参考文献43

共引文献107

同被引文献55

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:73
  • 2万建伟,粘永健,苏令华,等.实用高光谱遥感图像压缩[M].北京:国防工业出版社,2012.
  • 3Cagnazzo M, Poggi G, Verdoliva L. Region-based transform coding of muhispectral images [ J ]. IEEE transactions on im- age processing ,2007,16 ( 12 ) :2916-2926.
  • 4Blanes I, Serra-Sagrista J. Cost and scalability improvements to the Karhunen-Loeve transform for remote- sensing image coding[ J]. IEEE transactions on geoscience and remote sens- ing, 2010,48 ( 7 ) : 2854 -2863.
  • 5Blanes I, Serra-Sagrista J. Pairwise orthogonal transform for spectral image coding [ J ]. IEEE transactions on geoscienee and remote sensing ,2011,49 ( 3 ) :961-972.
  • 6Abrardo A, Barni M, Magli E, et al. Error-resilient and low- complexity onboard lossless compression of hyperspectral ima- ges by means of distributed source coding [ J ]. IEEE transac- tions on geoscience and remote sensing,2010,48 (4) :1892- 1904.
  • 7张兵,高连如.高光谱图像分类与目标检测[M].北京:科学出版社,2011.
  • 8Mielikainen J, Huang B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive predic- tion length [ J ]. IEEE geoscience and remote sensing letters, 2012,9(6) :1118-1121.
  • 9Mielikainet J,Toivanen P. Lossless compression of hyperspectral images using a quantized index to lookup tables[J].IEEE Transactions on Geoscience and remote sensing letters,2008,(03):474-478.
  • 10Huang B,Sriraja Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[J].{H}SPIE Proc,2006.63650L-1-63650L-8.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部