期刊文献+

复杂网络攻击的HMM检测模型 被引量:1

HMM Detection Model for Complicated Network Attacks
下载PDF
导出
摘要 针对检测复杂网络攻击的难度,剖析复杂网络攻击的本质特征,提出一种基于HMM的入侵检测模型,通过关联分析不同网络监视器产生的报警事件序列,挖掘这些报警事件的内在联系,进而检测复杂网络攻击。实验结果表明,该模型能有效地识别复杂网络攻击的类别。 It is difficuh to detect complicated network attacks effectively. The inherent characteristics of complicated network attacks are analyzed. A new HMM model for detecting sophisticated network attacks is proposed. The alarm event sequences from different network monitors are correlated and their inherent relationship is mined so as to detect complicated network attacks. Experimental results show that the model can recognize complicated network attacks effectively.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第12期106-108,共3页 Computer Engineering
基金 上海工程技术大学科研基金资助项目(07-22) 上海市教委科研创新基金资助项目(09YZ370)
关键词 计算机网络 网络攻击 隐马尔可夫模型 入侵检测 computer network network attacks Hidden Markov Model(HHM) model intrusion detection
  • 相关文献

参考文献5

  • 1张松红,王亚弟,韩继红.基于隐马尔可夫模型的复合攻击预测方法[J].计算机工程,2008,34(6):131-133. 被引量:7
  • 2孙彦,李永忠,罗军生.基于HMM和STIDE的异常入侵检测方法[J].计算机工程,2008,34(3):181-182. 被引量:4
  • 3Terran L. Machine Learning Techniques for the Computer Security Domain of Anomaly Detection[D]. West Lafayette, IN: Purdue Univerisy, 2000-08.
  • 4Cho S B, Park H J. Efficient Anomaly Detection by Modeling Privilege Flows Using Hidden Markov Model[J]. Computers & Security, 2003, 22(1): 45-55.
  • 5Evans S, Heinbuch D, Kyule E, et al. Risk-based Systems Security Engineering: Stopping Attacks with Intention[J]. IEEE Trans. on Security and Privacy, 2004, 8(6): 59-62.

二级参考文献10

  • 1张峰,秦志光,刘锦德.基于入侵事件预测的网络安全预警方法[J].计算机科学,2004,31(11):77-79. 被引量:11
  • 2王祖俪,程小平.入侵响应中基于事件相关性的攻击预测算法[J].计算机科学,2005,32(4):144-147. 被引量:10
  • 3赵战生,杜虹,吕述望.信息安全保密教程[M].合肥:中国科学技术大学出版社,2006.
  • 4Hofmeyr S A, Forrest S, Somayaji A. Intrusion Detection Using Sequences of System Calls[J]. Journal of Computer Security, 1998, 6(3): 151-180.
  • 5Raman C V. Project Work Intrusion Detection Using HMM with Improved Semantics[D], Hyderabad: University of Hyderabad, 2005.
  • 6Forrest S, Warrender C, Pearlmutter B. Detecting Intrusions Using System Calls: Alternative Data Models[C]//Proc. of IEEE Symposium on Security and Privacy. [S. l.]: IEEE Press, 1999.
  • 7Radha K P, Raju P, Bapi S, et al. Intrusion Detection System Using Sequence and Set Preserving Metric[C]//Proc. of IEEE International Conference on Intelligence and Security Informatics. [S. l.]: IEEE Press, 2005.
  • 8Qin Xinzhou, Lee Wenke. Attack Plan Recognition and Prediction Using Causual Networks[C]//Proceedings of ACSAC'04. Beijing, China: [s. n.], 2004.
  • 9Rabiner L R. A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-285.
  • 10Ourston D, Matzner S, Stump W, et al. Application of Hidden Markov Models to Detecting Multi_stage Network Attacks[C]//Proceedings of the 36th Hawaii International Conference on System Sciences. Hawaii: [s. n.], 2003.

共引文献9

同被引文献7

  • 1陈亮,龚俭,徐选.应用层协议识别算法综述[J].计算机科学,2007,34(7):73-75. 被引量:33
  • 2Wright C, Monrose F, Masson G. Hmm Profiles for Network Traffic Classfication( Extended Abstract) [ C ~//Proceedings of the 2004 ACM Workshop on Visualization and Data Mining fot Computer Security. 2004 : 9-15.
  • 3Wright C, Monrose F, Masson G. Towards Better Protocol Identification using Profile HMMs[R]. JHU Tech. Rep. JI-IU- SPAR051201, Jun, 2005.
  • 4Jose" Rverardo Bessa Maia, Raimit Holanda Filho. Internet Traffic Classification using a Hidden Markov Model[ C ]//10th In- ternational Conference on Hybrid Interlligent Systems. 2010: 37-42.
  • 5王炳锡,屈丹,彭煊.实用语言识别基础[M].北京:国防工业出版社,2005.
  • 6张丽君,吴晓娟,盛赞,亓磊.基于HMM复杂场景下的行为识别方法[J].计算机工程,2008,34(7):212-214. 被引量:10
  • 7吴震,刘兴彬,童晓民.基于信息熵的流量识别方法[J].计算机工程,2009,35(20):115-116. 被引量:5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部