4Quinlan J R. C4.5: Programs for machine learning [M]. San Mateo, CA: Morgan Kaufmann, 1993.
5Son N H, Szczuka M S, S' l zak D. Neural networks design: Rough set approach to continuous data [A]. In: Komorowski J, Zytkow J, eds. The First European Symposium on Principle of Data Mining and Knowledge Discovery (PKDD'97), June 25-27, Trondheim, Norw
6Haixun Wang, Yu P S. SSDT: A scalable subspacesp-litting classifier for biased data [A]. ICDM 2001 Proceedings, IEEE International Conference Proceedings [C]. 2001. 542-549.
7Tom M Mitchell, Tom M. Machine learning [M].Asia: McGraw-Hill Education, 2003.42-47.
8Buntine W, Niblett T. A further comparion of splitting rules for decision-tree induction [J]. MachineLearning, 1992,8(1):75-85.
9Kononenko I, Se J H. Attribute selection for modeling [J]. Future Generation Computer Systems,1997, 13(2-3): 181-195.
10Shih Y S. Families of splitting criteria for classification tree [J]. Statistics and Computing, 1999, 9(4) :309-315.