期刊文献+

人工智能技术在电网稳定评估中的应用综述 被引量:32

A Survey on Application of Artificial Intelligence Technology in Power System Stability Assessment
原文传递
导出
摘要 综述了基于人工智能技术实现电网稳定评估的步骤、关键环节。总结了国内外在候选特征集的组成方式、关键特征的形成方法、智能稳定评估技术的选择等方面的研究进展。指出了动态输入特征难于提供电网智能决策所需信息、多数智能型稳定评估技术的可解释性及适应性差等不足,并提出原始输入特征应以电网实时状态信息为主、输入空间的裁减技术应以嵌入式特征方法为主要研究方向,及研究重点应为基于知识发现技术的稳定评估算法等建议。 A survey on procedures and key links for power network stability assessment based on artificial intelligence is given. The advances in the research on composition modes of initial feature set, formation approaches of key features and selection of intelligent stability assessment technology home and abroad are summarized. The defects such as difficult to offer necessary intelligent decision-making information required for power network by dynamic input features, weak interpretability and adaptability of most intelligent stability assessment technologies are pointed out. Some suggestions are proposed, they are: for initial input features the first place should be given to real-time state information of power network, for the reduction of input space the embedded feature searching should be taken as principal research direction and the major research emphasis should be paid to the stability assessment algorithm based on knowledge discovery technology and so on.
出处 《电网技术》 EI CSCD 北大核心 2009年第12期60-65,71,共7页 Power System Technology
基金 国家自然科学基金资助项目(50407014)~~
关键词 电力系统 稳定评估 人工智能 特征选择 知识发现 power system intelligence feature selection security assessment artificial knowledge discovery
  • 相关文献

参考文献42

  • 1Morison K. On-line dynamic security assessment using intelligent systems[C]. Proceedings of IEEE Power Engineering Society General Meeting, Montreal, Canada, 2006.
  • 2Raj Kumar Aggarwal.人工智能及其在含可再生能源电源的电网安全中的应用(英文)[J].电网技术,2007,31(20):46-54. 被引量:6
  • 3Huang J A, Valette A, Beaudoin M, et al. An intelligent system for advanced dynamic security assessment[C] . Proceedings of International Conference on Power System Technology, Kunming, China, 2002.
  • 4Bahbah A G, Girgis A A. New method for generators' angles and angular velocities prediction for transient stability assessment of multimachine power systems using recurrent artificial neural network[J]. IEEE Trans on Power Systems, 2004, 19(2): 1015-1022.
  • 5Amjady N. Application of a new fuzzy neural network to transient stability prediction[C]. Proceedings of IEEE Power Engineering Society General Meeting, San Francisco, USA, 2005.
  • 6马骞,杨以涵,刘文颖,齐郑,郭金智.多输入特征融合的组合支持向量机电力系统暂态稳定评估[J].中国电机工程学报,2005,25(6):17-23. 被引量:137
  • 7Amjady N, Majedi S F. Transient stability prediction by a hybrid intelligent system[J]. IEEE Trans on Power Systems, 2007, 22(3): 1275-1283.
  • 8Alvarez J M G, Mercado P E. Online inference of the dynamic security level of power systems using fuzzy techniques[J]. IEEE Trans on Power Systems, 2007, 22(2): 717-726.
  • 9Li G, Rovnyak S M. Integral square generator angle index for stability ranking and control[J]. IEEE Trans on Power Systems, 2005, 20(2): 926-934.
  • 10顾雪平,张文朝.基于Tabu搜索技术的暂态稳定分类神经网络的输入特征选择[J].中国电机工程学报,2002,22(7):66-70. 被引量:34

二级参考文献139

共引文献355

同被引文献457

引证文献32

二级引证文献501

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部