期刊文献+

CARMA模型多新息增广随机梯度参数估计算法的收敛性 被引量:5

Convergence of multi-innovation ESG parameter estimation algorithms for CARMA models
下载PDF
导出
摘要 将多新息辨识理论用于研究CARMA模型的参数估计问题。首先用估计残差来代替信息向量中的不可测噪声项,导出了CARMA模型的增广随机梯度算法,进一步把标量新息推广为新息向量,导出了相应的多新息增广随机梯度辨识算法,并利用鞅收敛定理分析了多新息增广随机梯度算法的收敛性。最后的仿真结果验证了该算法的有效性。 The parameter estimation problem of CARMA models is studied by using the multi-innovation identification theory. The basic idea is to obtain the extended stochastic gradient algorithm by replacing the unmeasurable noise terms in the information vector with the estimated residuals and to derive the multi-innovation extended stochastic gradient (ESG) algorithm by expanding the scalar innovation to an innovation vector. The convergence properties of the proposed multi-innovation ESG algorithm are analyzed by using the martingale convergence theorem. The simulation example indicates that the multi-innovation ESG algorithm is effective.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第6期1446-1449,共4页 Systems Engineering and Electronics
基金 国家自然科学基金项目资助课题(60574051)
关键词 参数估计 多新息辨识 随机梯度 收敛性 鞅收敛定理 parameter estimation multi-innovation identificationl stochastic gradient convergence property martingale convergence theorem
  • 相关文献

参考文献7

二级参考文献18

  • 1丁锋,谢新民,方崇智.时变系统辨识的多新息方法[J].自动化学报,1996,22(1):85-91. 被引量:47
  • 2丁锋.多变量系统的辅助模型辨识方法的收敛性分析[J].控制理论与应用,1997,14(2):192-200. 被引量:28
  • 3[9]MOUSTAFA K A F. Identification of stochastic time-varying systems[J]. IEE Proc, Part D, 1983,130(4): 137 - 142.
  • 4[10]GOODWIN G C, SIN K S. Adaptive filtering perdiction and control[J]. Englewood Cliffs, New Jersey: Prentice-hall,Inc., 1984.
  • 5[2]Goodwin G C,Sin K S.Adaptive filtering prediction and control.Prentice-Hall,Inc.,Englewood Cliffs,New jersey,1984
  • 6[3]闯纯伯,史维.自适应控制.北京:电子工业出版社,1986
  • 7[9]Moustafa K A F.Identification of stochastic time-varying systems.IEE proceeding,Part D,1983; 130 (4):137-142
  • 8[11]Ding F,Chen T.Performance analysis of multi-innovation gradient type identification methods.Automatica,2007 ;43 (1):1-14
  • 9[13]Ding F,Chcn H B,Li M.Multi-innovation least squares identification methods based on the auxiliary model for MISO systems.Applied Mathematics and Computation,2007; 187(2):658-668
  • 10[1]Ding F,Chen H B.Li M.Multi-innovation least squares identifica-tion methods based on and auxiliary model for MISO systems.AppliedMathematics and Computation,2007;187(2):658-668

共引文献49

同被引文献191

引证文献5

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部