期刊文献+

基于小波变换的火车车轮扁疤信号能量分析 被引量:1

The energy analysis of wheel-flat signal based on wavelet transform
下载PDF
导出
摘要 火车车轮扁疤是火车行车事故的重大隐患之一,了解扁疤信号的能量分布情况对正确检测车轮扁疤有重要的意义.针对车轮扁疤信号具有持续时间短、突变快等特点,提出了一种运用小波变换的多分辨率分析和小波能量谱对扁疤信号进行分析的方法,通过比较扁疤信号在不同尺度下的能量密度,找出能量与各频段之间的对应关系,得出了扁疤信号的能量主要集中在2 500Hz以下的频带范围内,在实际的车轮扁疤检测算法中只需分析频带范围为2 500Hz以下的扁疤信号即可,通过实验验证了该能量分析方法的有效性. Wheel-flat is one of the major hidden dangers, which can cause traffic accident of trains, so fully understanding the energy distribution of the wheel-flat signal is of great significance to detecting the wheel-fiat accurately. Based on the characters of short duration and abrupt change of wheel-fiat signal, the multiresolution analysis method of wavelet and wavelet energy spectrum are applied to analyze the wheel-flat signal. By comparing the energy densities of wheel-flat signals in different scales, the relationship between the value of energy and different frequency bands is acquired, and then a conclusion is drawn that the energies of wheel-fiat signals are mainly distributed in the frequency bands below 2 500 Hz, so just the wheel-flat signals below 2 500 Hz need to be analyzed in the actual wheel-fiat detection algorithm. The detection verifies the validity of this analysis.
出处 《应用科技》 CAS 2009年第6期25-28,共4页 Applied Science and Technology
关键词 扁疤信号 小波变换 小波能量谱 多分辨率分析 能量分析 wheel-flat signal wavelet transform wavelet energy spectrum multiresolution analysis energy analysis
  • 相关文献

参考文献6

二级参考文献14

共引文献39

同被引文献9

  • 1Papaellas M Ph, Robert C, Davis C L. A review on non- destructive evaluation of rails: state-of-the-art and future development[ J ]. Journal of Rail and Rapid Transit, 2008, 222 : 367 - 384.
  • 2Belotti V, Crenna F, Michelini R C, et al. Wheel-flat diagnostic via wavelet transform[ J]. Mechanical Systems and Signal Processing,2006,20(8) : 1953 -1966.
  • 3Brizuela J, Fritsch C, Ibanez A. Railway wheel-flat detection and measurement by ultrasound [ J ]. Transportation Research Part C : Emerging Technologies ,2011,19 (6) : 975 - 984.
  • 4Papaelias M P, Lugg M. Detection and evaluation of rail surface defects using ahernating current field measurement techniques [ J ]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2012,226(5) : 530 -541.
  • 5Huang N E, Shen Z, Long S R, et al. The Empirical mode of decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc Royal Society, 1998,454 : 903 - 995.
  • 6Remington P J. Wheel/rail noise, Part I: characterization of wheel/rail dynamic system [ J ]. Journal of Sound and Vibration, 1976,46 : 359 - 379.
  • 7马旺宇,刘栋,赵文博.应用于钢轨检测的便携式涡流探伤仪的研制[J].机械设计与制造,2010(2):88-90. 被引量:7
  • 8魏祥龙,张智慧.高速铁路无砟轨道主要病害(缺陷)分析与无损检测[J].铁道标准设计,2011,31(3):38-40. 被引量:40
  • 9吕砚山,赵正琦.BP神经网络的优化及应用研究[J].北京化工大学学报(自然科学版),2001,28(1):67-69. 被引量:61

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部