期刊文献+

非光滑分岔的映射分析 被引量:8

Map analysis for non-smooth bifurcations
下载PDF
导出
摘要 非光滑因素在自然界和工程领域中广泛存在,应用动力系统的理论进行统一研究具有重要的意义。非光滑系统不仅可能发生光滑系统的各种常规分岔,而且还可能发生一些光滑系统所不具备的特有分岔,统称为非光滑分岔。这类分岔对系统的动力学行为具有重要影响,并提供了更多通向混沌的路径,是非光滑动力学研究的热点和难点。 For non-smmoth systems, except that general bifurcations exist as in smooth systems, special bifurcations, named non-smooth bifurcations, may also appear. These non-smooth bifurcations have important effect on system dynamic behavior, and provide even more routes to chaos. This is the hot and difficult point for non-smooth dynamics.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第6期79-81,121,共4页 Journal of Vibration and Shock
基金 国家自然科学基金项目(10572011)
关键词 非光滑 分岔 混沌 non-smooth bifurcations chaos
  • 相关文献

参考文献20

  • 1Nordmark A.Non-periodic motion caused by grazing incidence in impact oscillators[J].J Sound Vibr.1991,145(2):279-297.
  • 2Nordmark A.Universal limit mapping in grazing bifurcations[J].Physical Review E.1997,55:62-82.
  • 3Dankowicz H,Nordmark A.On the origin and bifurcations of stick-slip oscillations[M].Physica D 136,1999,280-302.
  • 4Frederiksson M,Nordmark A.Bifuractions caused by grazing incidence in many degrees of freedom impact oscillators[M].Proc.R.Soc.London A 453,1997,1261-1276.
  • 5Frederiksson M,Nordmark A.On normal form calculations in impact oscillators[M].Proc.R.Soc.London A 456,2000,315-329.
  • 6Di Bernardo M,Buddb C J,Champneys A R.Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems[M].Physica D 160,2001,222-254.
  • 7Di Bernardo M,Buddb C J,Champneys A R.Grazing and Border-Collision in Piecewise-Smooth Systems:A Unified Analytical Framework[J].Physical Review Letters 2001,86(3):2553-2556
  • 8Di Bernardo M,Buddb C J,Champneys A R.Corner collision implies border-collision bifurcation[M].Physica D 154,2001,171-194.
  • 9Di Bernardo M,Kowalczyk P,Nordmark A.Bifurcations of dynamical systems with sliding:derivation of normal-form mappings[M].Physica D 170,2002,175-205.
  • 10Chin W,Ott E.Nusse H E,et al.Grazing bifurcation in impact oscillators[J].Physical Review E 1994,50(6):4427-4444.

同被引文献55

  • 1BI QinSheng Faculty of Science,Jiangsu University,Zhenjiang 212013,China.The mechanism of bursting phenomena in Belousov-Zhabotinsky(BZ) chemical reaction with multiple time scales[J].Science China(Technological Sciences),2010,53(3):748-760. 被引量:11
  • 2郭树起,杨绍普,郭京波.干摩擦阻尼系统的非粘结受迫振动分析[J].振动工程学报,2005,18(3):276-281. 被引量:8
  • 3丁旺才,谢建华.碰撞振动系统分岔与混沌的研究进展[J].力学进展,2005,35(4):513-524. 被引量:40
  • 4罗冠炜,张艳龙,谢建华.含对称刚性约束振动系统的周期运动和分岔[J].工程力学,2007,24(7):44-52. 被引量:8
  • 5曹宏瑞,牛蔺楷,何正嘉.高速主轴轴承损伤建模与振动响应仿真研究[J].振动与冲击,2012,31(增刊1):241—244.
  • 6Luo A C J. The mapping dynamics of periodic motions for a three piecewise linear system under a periodic excitation[ J]. Journal of Sound and Vibration, 2005,283:723 - 748.
  • 7Lu0 A C J, Che L. Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts [ J ]. Chaos, Solitons and Fractals, 2005,24:567 - 578.
  • 8Ji J C, Hansen C H. Analytical approximation of the primary resonance response of a periodically excited piecewise nonlinear-linear oscillator [ J ]. Journal of Sound and Vibration, 2004,278 : 327 - 342.
  • 9Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields [ M ]. New York: Springer-Verlag, 1983.
  • 10Yoshitake Y, Sueoka A. Forced self-exited vibration accompanied by dry friction. Applied nonlinear dynamics and chaos of mechanical systems with discontinuities [ J ]. WoAd Scientific Series on Nonlinear Science Series A,2000,28:237 - 259.

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部