期刊文献+

决策树分类算法的可扩展性研究

The Research for Scalability of Decision Tree Classification Algorithms
下载PDF
导出
摘要 决策树是数据挖掘分类问题算法中一种性能较好的算法,本文主要研究自决策树在数据挖掘中应用以来存在问题,主要是可扩展性问题。综述了国内外针对此问题所提出的解决方法,以及分析了改进算法的优缺点,以便有利于对决策树关键问题,即扩展性问题的研究。同时本论文中所研究的算法的思想也有助于数据挖掘中其它领域解决大数据集问题。 Among classification models for data exploring, Decision tree is a better model in performance. This article mainly deals with problem that produced since decision tree applied in data exploring. The main problem is scalability. This article overviewed the solution for this problem at home and abroad, and analyzed on the advantages and disadvantages of improved algorithms. That benefits for research on scalable decision tree. At the same time, the idea of algorithms researched in this article is helpful for solving huge data set problem in data exploration of other field.
作者 刘利 刘珍
出处 《惠州学院学报》 2009年第3期58-61,共4页 Journal of Huizhou University
关键词 决策树 分类挖掘 可扩展性 decision tree classification mining scalability
  • 相关文献

参考文献1

二级参考文献18

  • 1Babcock B,Babu S,Datar M,Motawani R,Widom J.Models and issues in data stream systems//Proceedings of the PODS.2002
  • 2Jin R,Agrawal G.Efficient decision tree construction on streaming data//Proceedings of the ACM SIGKDD 2003.2003:571-576
  • 3Last M.Online classification of nonstationary data streams.Intelligent Data Analysis,2002,6(2):129-147
  • 4Muthukrishnan S.Data streams:Algorithms and applications//Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,2003
  • 5Xie Q H.An efficient approach for rmmng concept-drifting data streams[M.S.dissertation].National University of Tainnan,Tainan,China,2004
  • 6Domingos P,Hulten G.Mining high-speed data streams//Proceedings of the Association for Computing Machinery Sixth International Conference on Knowledge Discovery and Data Mining.2000:71-80
  • 7Gama J,Rocha R,Medas P.Accurate decision trees for mining high-speed data streams//Domingos P,Faloutsos C eds.Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining.ACM Press,2003:523-528
  • 8Peng Y H,Flach P A.Soft discretization to enhance the continuous decision tree induction//Proceedings of the ECML/PKDD'2001 Workshop IDDM' 2001.Freiburg,Germany,2001
  • 9Hoeffding W.Probability inequalities for sums of bounded random variables.Journal of the American Statistical Association,1963,58:13-30
  • 10Fayyad U M,Iraru K B.On the handling of continuous-valued attributes in decision tree generation on learning.Machine Learning,1992,9:87-102

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部