期刊文献+

协同过滤算法中一种改进的相似性计算方法 被引量:2

An Improved Method of Calculating Similarity in Collaborative Filtering
下载PDF
导出
摘要 协同过滤算法作为一种成功的个性化推荐技术已经被应用到很多领域中。传统的协同过滤算法中用户相似性的计算只考虑了用户评分信息而没有考虑到用户的社会背景信息,针对这个问题,本文提出了基于用户社会信息的相似度计算方法,实验表明,改进后的协同过滤算法能更好地反映用户兴趣,提高推荐精度,在推荐效果方面得到了更好的改善。 Collaborative filtering is one successful personalized recommendation technology, and is extensively used in many fields. Collaborative filtering algorithms only consider users' mark information. They do not consider users' social information. To solve this problem,the paper puts forward the calculation of social information similarity. Experimental results show that our proposed algorithm outperforms traditional collaborative filtering algorithm.
出处 《桂林电子科技大学学报》 2009年第3期234-237,共4页 Journal of Guilin University of Electronic Technology
关键词 个性化服务 协同过滤 社会信息 相似度 personalized service collaborative filtering social information similarity
  • 相关文献

参考文献9

  • 1GREG L, BRENT S, JEREMY Y. Amazon. Com Recommendationsz item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003,7 (1) : 76-80.
  • 2邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 3KARYPIS G. Evaluation of item-based top-N recommendation algorithms [C]//Proceedings of CIKM 2001, Atlanta, ACM Press, 2001 : 247-254.
  • 4ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 5SCHAFER J, KONSTAN J, RIEDL J. Recommender systems in ecommerce[C]//Proceedings of ACM E-Commerce, ACM- Press,1999:158-166.
  • 6HERLOCKER J, KONSTAN J, BORCHERS A, et al. An al- gorithmic framework for performing collaborative filtering[C]// Proceedings of the 1999 Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999.
  • 7Movielens[EB/OL]. http://movielens, umn. edu/Iogin.
  • 8梁娟娟,王喜成.利用数据挖掘加强客户关系管理[J].桂林电子工业学院学报,2004,24(6):67-70. 被引量:2
  • 9张润莲.基于数据挖掘的移动大客户管理系统[J].桂林电子工业学院学报,2004,24(6):30-32. 被引量:2

二级参考文献18

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献559

同被引文献27

  • 1秦国,杜小勇.基于用户层次信息的协同推荐算法[J].计算机科学,2004,31(10):138-140. 被引量:15
  • 2DCCI互联网数据中心.2012中国微博蓝皮书[EB/OL].http://wenku, baidu, com/view/72166blgcc79316765ce1572, html.
  • 3曹恬,周丽,张国煊.一种基于词共现的文本相似度计算[J].计算机工程与科学,2007,29(3):52-53. 被引量:14
  • 4百度百科.企业微博[EB/OL][2014-05-12]http://baike.baidu.com/view/4611266htm?fr=aladdin.
  • 5Miller J, Stocker A. Enterprise microblogging for advanced knowledge sharing: The references@BT case study[J]. Journal of Universal Computer Science,2011,17(4) :532-547.
  • 6Barnes S, B6hringer M. Modeling use continuance behavior in microblogging services: The case of twitter[J]. Jour- nal of Computer Information Systems, 2011, 5 1 (4) : 1- 1 0.
  • 7SchSndienst V, Krasnova H,GiJnther O,et al. Micro-BIogging adoption in the enterprise: An empirical analysis[C]// Proceedings of 10th International Conference on Wirtschaftsinformatik. Zurich, Switzerland, 2011 :93 1-940.
  • 8DinK如意淘&猎云网:数据解读各大B2C电子商务用户数据[EB/OL].中国互联网数据资讯中心[2014-05-12].http://www.199it.com/archives/109189.html.
  • 9苏秦.淘宝及天猫网购消费者特征及行为分析[EB/OL].[2014-05-12].http://classroom.eguan.cn/dingwei_147761.html.
  • 10Chuang S L, Ohien L F. Taxonomy generation for text segments: A practical web-based approach[J]. ACM Transac- tions on Information Systems, 2005, 23(4) : 363-369.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部