期刊文献+

基于IASHGA算法的水轮发电机组PID调速器参数优化研究 被引量:1

Optimal Hydraulic Turbogenerators PID Governor Based on IASHGA
下载PDF
导出
摘要 针对遗传算法(SGA)存在求解精度与收敛速度间的矛盾,提出了一种自适应对称调和遗传算法(IASHGA),并将该算法用于水轮发电机组PID调速系统参数的优化设计,以系统的上升时间和超调量指标作为IASHGA算法的适应度函数;以四川某水电站的真实数据对经过优化后遗传算法PID控制规律进行计算机仿真.仿真结果表明,改进的算法较之常规遗传算法(SGA)和粒子群优化算法(PSO),不但提高了全局的搜寻能力,而且有效避免了早熟收敛问题.为水轮机调速器PID参数优化研究提供了新途径. In allusion to the conflict of solving precision and convergence speed in simple genetic algorithm (SGA), this paper proposes a kind of a genetic algorithm for self adaptation, symmetry and congruity and also applies it to the optimization of the PID gains tuning of hydraulic turbogenerators speed governor. The rise time and overshoot volume targets are taken as the fitness functions of the IASHGA algorithm. The optimized PID control law is simulated with data from a hydropower plant in Sichuan. The experimental results show that the improved method not only has better ability to converge to the global optimum than the SGA and the PSO, but also can avoid the premature convergence effectively. It is a new way to optimize the turbine governor PID parameter.
作者 牛林 万星
出处 《昆明理工大学学报(理工版)》 北大核心 2009年第3期66-70,共5页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 四川省教育厅科学研究基金项目(项目编号:2006C095) 成都市科技攻关项目(项目编号:07GGYB198SF)
关键词 对称调和 遗传算法 水轮发电机组 调速器 PID参数优化 symmetry and congruity genetic algorithm hydraulic turbogenerator speed governor PID optimization
  • 相关文献

参考文献10

二级参考文献47

共引文献209

同被引文献20

  • 1孟安波,叶鲁卿,殷豪,梁宏柱,傅闯,程远楚.遗传算法在水电机组调速器PID参数优化中的应用[J].控制理论与应用,2004,21(3):398-404. 被引量:20
  • 2李昌隆,程鹏,陈晓波,柴旭东.按区域惩罚划分的并行多目标遗传算法[J].北京航空航天大学学报,2005,31(11):1232-1236. 被引量:4
  • 3徐玖平,吴魏.多属性决策的理论与方法[M].北京:清华大学出版社,2007.
  • 4Lansberry J E,Wozniak L. Adaptive hydrogenerator governor tuning with a genetic algorithm[J].IEEE Transactions on Energy Conversion, 1994, 9(1): 179-185.
  • 5Wolpert D H,Macready W G. No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation . 1997(1): 67-82.
  • 6AstromK, Panagopoulso H, Hagglund T. Design of PI controllers based on non-convex optimization [J]. Automatica, 1998,34(5): 585-601.
  • 7Fonseca C M,Fleming PJ. An overview of evolutionary algorithms in multi-objective optimization [J]. Evolutionary Computation, 1995(3): 1-16.
  • 8van Veldhuizenn D A,Zydallis J B,Lamont G B. Considerations in engineering parallel multi-objective evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation, 2003,7(2): 144-173.
  • 9JaimsAL,Coello C A. MRMOGA: parallel evolutionarymulti-objective optimization using multiple resolutions [C]//Proceedings of IEEE Congress on Evolutionary Computation. Edinburgh, UK: IEEE,2005: 2294-2301.
  • 10Negro F T,Ortega J,Ros E,et al. PSFGA: Parallel processing and evolutionary computation for multiobjective optimization[J]. Parallel Computing, 2004(30): 721-739.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部