期刊文献+

基于模态辨识的原油含水率智能组合测量模型 被引量:1

Intelligent Compound Model for Measuring Water Content of Crude Oil Based on Modal Identification
下载PDF
导出
摘要 为提高原油含水率宽量程在线测量的精度,采用一套基于多传感器的油水两相流实验室模拟系统对影响其测量的多个敏感参量进行测定,提出基于粗糙集预处理器、支持向量机分类器和遗传神经网络预测器的原油含水率智能组合测量模型.实验结果表明,该模型在很大程度上解决了油水乳化液模态、温度、矿化度等因素的交叉影响及传感器自身非线性的校正问题,可通过模糊推理与自学习实现油水混合模态辨识,并根据工况的变化调整测量模型参数,有效地提高了原油含水率宽量程在线智能测量的精度. In order to improve the on-line measuring accuracy and widen the measuring range of water content of crude oil, a simulated multi-sensor measurement system of oil/water two-phase flow is adopted to detect the para- meters influencing the measurement, and an intelligent compound model for measuring the water content is estab- lished by combining the rough set preprocessor, the support vector machine classifier and the genetic neural network predictor. Experimental results show that the proposed model effectively eliminates the cross interference of oil/wa- ter emulsion modal, temperature and salinity content, overcomes the nonlinearity of sensor itself, realizes the modal identification of oil-water mixture via fuzzy reasoning and self-learning, and adjusts the model parameters by changing working conditions adaptively. Thus, the accuracy of on-line intelligent measurement of water content of crude oil is effectively improved in a wide measuring range.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期73-78,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 华南理工大学优秀博士学位论文创新基金资助项目(200903023)
关键词 原油 油水两相流 粗糙集理论 模态辨识 遗传算法 神经网络 支持向量机 crude oil oil/water two-phase flow rough set theory modal identification genetic algorithm neural network support vector machine
  • 相关文献

参考文献17

  • 1Hewitt G F. Measurement for two-phase flow parameters [ M].London : Academic Press, 1978.
  • 2王书鹤.原油含水率在线检测中小波阈值去噪的研究[J].山东大学学报(理学版),2003,38(3):90-93. 被引量:1
  • 3Zhang Dong-zhi, Hu Guo-qing, Xia Bo-kai. Analysis of multi-factor influence on measurement of water content in crude oil and its model [ C ] ~/Proceedings of the 27th Chinese Control Conference. Beijing: Beijing University of Aeronautics and Astronautics Press ,2008:406-411.
  • 4Zhang Dong-zhi,Xia Bo-kai, Fu Tao. Measurement for water content in oil-water two phase flow based on novel hybrid intelligent prediction model [ C ]//Proceedings of the 26th Chinese Control Conference. Beijing: Beijing Universi- ty of Aeronautics and Astronautics Press,2007:367-371.
  • 5Tuncer E, Serdyuk Y V, Gubanski S M. Dielectric mixtures:electrical properties and modeling [ J ]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002,9(5) :809-828.
  • 6Mohamed A M O, Elgamal M, Zekri A Y. Effect of salinity and temperature on water cut deternfination in oil reservoirs [ J]. Journal of Petroleum Science and Engineering, 2003,40(3/4) :177-188.
  • 7任磊,陈祥光,刘春涛,裴旭东.基于模式分类的油水混合物含水率测量方法[J].化工学报,2008,59(4):970-976. 被引量:5
  • 8Mohamed A M O,Elgamal M,Said R A. Determination of water content and salinity from a producing oil well using CPW probe and eigendecomposition [ J ]. Sensors and Actuators A : Physical, 2006,125 ( 2 ) : 133-142.
  • 9Schuller R B, Gundersen T, Halleraker M, et al. Measurement of water concentration in oil/water dispersions with a circular single electrode capacitance probe [ J ]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(5) :1378-1383.
  • 10Fingas M,Fieldhouse B. Formation of water-in-oil emulsions and application to oil spill modeling [ J]. Journal of Hazardous Materials, 2004,107 ( 1/2 ) : 37- 51.

二级参考文献21

  • 1张国宣,孔锐,施泽生,郭立.一种新的基于聚类的SVM迭代算法[J].仪器仪表学报,2004,25(z1):613-614. 被引量:2
  • 2赵鑫,金宁德,李伟波.油水两相流相含率的软测量方法[J].化工学报,2005,56(10):1875-1879. 被引量:16
  • 3徐袭,姚琼荟,石敏.基于粗糙集与支持向量机的故障智能分类方法[J].计算技术与自动化,2006,25(1):32-34. 被引量:8
  • 4邓九英,毛宗源,徐宁.基于粗糙集属性变分区的属性约简[J].华南理工大学学报(自然科学版),2006,34(9):50-55. 被引量:7
  • 5Donoho.DL.De-noising by soft-thresholding[J].IEEE Transon Information Theory,1995,41(3):613-627.
  • 6Mallat S, Huang W. Singularity detection and processing with Wavelets[J]. IEEE Transactions on Information Theory, 1992,38(2) : 617 - 643.
  • 7邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2006:328-355.
  • 8Asuncion Arthur, Newman David. The UCI machine learning repository [ EB/OL ]. [ 2007-06-10 ]. http :// archive, ics. uci. edu/ml/machine-learning-databases/.
  • 9Vapnik V. The nature of statistical learning theory [ M ]. Berlin : Springer-Verlag, 1995.
  • 10Platt J. Sequential minimal optimization:a fast algorithm for training support vector machines [ R ]. Redmond, WA: Microsoft Research, 1998.

共引文献26

同被引文献31

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部