期刊文献+

模拟河道生物反应器原位修复受污染水源水研究 被引量:12

IN-SITU BIOREMEDIATION OF POLLUTED SOURCE WATER WITH SIMULATED RIVER BIOREACTOR
下载PDF
导出
摘要 以弹性填料为载体,考察了模拟河道生物反应器处理受污染水源水过程挂膜启动特性,并对曝气强度、水力停留时间(HRT)等工艺参数进行了系统性能影响研究.结果表明,模拟河道反应器经24d挂膜启动后,氨氮(NH3-N)、总磷(TP)、高锰酸盐(CODMn)的平均去除率分别达61.0%,29.6%,16.0%;HRT 24h、体系溶解氧(DO)质量浓度(P)5.5~6.5mg·L^-1条件下,反应系统具有稳定的污染物去除能力,NH3-N,TN,TP,COD‰的去除率分别达到75.0%,11.1%,11.1%和26.1%.同时,增大曝气量和缩短HRT,污染物的去除效果均略有下降,后者对生物膜去污性能的影响较大.镜检结果发现,模拟河道反应器运行过程填料表面逐渐发生变化,由无色向棕褐色、褐绿色转变,并出现了藻类、细菌和后生动物等,生物量逐渐增多.结果初步揭示,填料表面附着的生物量及微生物种类与其对污染物的去除效率具有一定的相关性. A simulated river reactor with developed biofilm on elastic plastic filler was used for in situ remediation treatment of polluted source water. Reactor start-up, effect on aeration intensity and hydraulic retention time effect on remediation performance were all investigated. After continued operation for 24 days, the average removal efficiencies for NH3-N, TP and CODMn were 61.0%, 29. 6% and 16. 0%, respectively. Operated at a hydraulic retention time of 24 h and dissolved oxygen of 5.5 - 6.5 mg. L^-1 , maximum pollutant removal was achieved with average removal efficiencies for NH3-N, TN, TP, CODMn, at 75.0%, 11.1%, 11.1% and 26.1%, respectively. Increasing aeration intensity or reducing hydraulic retention time resulted in a decrease in the efficiency of pollutant removal. The filler surface changed steadily during the course of bioreactor operation, surface color changing from colorless to chocolate brown, to breen, along with increased biomass and the appearance of microorganisms (alga, bacteria and metazoan). Biomass and microorganism attachment had positive correlation with pollutant removal.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期295-300,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家科技支撑计划资助项目(2006BAJ08B01)
关键词 受污染水源水 模拟河道生物反应器 生物膜 原位修复 polluted source water simulated river reactor biofilm in situ remediation
  • 相关文献

参考文献24

  • 1王占生,刘文君.微污染水源饮用水处理[M].Beijing:China Construction Industry Press,2003,1.
  • 2Kovacic D A, Twait R M, Wallace M P. Use of created wetlands to improve water quality in the Midwest-Lake Bloomington case study [J]. Ecological Engineering, 2006, 28:258.
  • 3Zhou S, Hosomi M. Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan [J]. Ecological Engineering, 2008, 32: 147.
  • 4Bernhardt E S, Palmer M A, Allan J D, et al. Synthesizing US river restoration efforts[J]. Science, 2005, 308: 636.
  • 5Juang D F, Chen P C. Treatment of polluted river water by a new constructed wetland[J]. International Journal Environmental Science and Technology, 2007, 4(4): 481.
  • 6Mitsch W J, Lefeuvre J C, Bouchard V. Ecological engineering applied to river and wetland restoration[J]. Ecological Engineering, 2002, 18(5):529.
  • 7成小英,李世杰,濮培民.城市富营养化湖泊生态恢复——南京莫愁湖物理生态工程试验[J].湖泊科学,2006,18(3):218-224. 被引量:36
  • 8Wu Q T, Gao T, Zeng S, et al. Plant-biofilm oxidation ditch for in situ treatment of polluted waters [J]. Ecological Engineering, 2006, 28: 124.
  • 9田伟君,郝芳华,翟金波.弹性填料净化受污染入湖河流的现场试验研究[J].环境科学,2008,29(5):1308-1312. 被引量:28
  • 10Pedersena M L, Andersena J M, Nielsena K, et al. Restoration of Skjern River and its valley: project description and general ecological changes in the project area[J]. Ecological Engineering, 2007, 30:131.

二级参考文献80

共引文献172

同被引文献157

引证文献12

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部