摘要
研究了格点势能Vn=λtanh[Acos(2πσn)]/tanhA,(σ=(5-1)/2)的一类非公度体系的量子动力学性质,着重分析了自关联函数C(t)在不同哈密顿量参数区域的长时行为,并讨论了自关联函数C(t)与能谱关联维数D2的关系.结果表明:当t→∞和l→0时,C(t)~t-δ,R(l)~lD2,且D2=δ.随着λ的增大,存在两个临界参数λC1和λC2,当0<λ<λC1C(t)~t-1,当λC1<λ<λC2时,C(t)~t-δ,0<δ<1;而当λ>λC2时,C(t)~t0,电子被局域在初始位置.临界点λC1和λC2的大小依赖于参数A的大小.
We study the quantum dynamics in an incommensurate system with potentials Vn=λtanh[Acos (2πσn)]/tanhA,where σ=(5-1)/2.Particular attention is paid to the analysis of long-time behavior of autocorrelation function C(t) and the relationship between C(t) and spectrum probility R(l). With the increase of λ,we find two critical values (λC1and λC2),which are related to parameter A. When 0<λ<λC1,numerical calculations show that C(t)~t-1,which corresponds to the case of periodic systems. For the case of λC1<λ<λC2,C(t)~t-δwith 0<δ<1. When λ>λC2,C(t)~t0,and the electron is localized.
出处
《湘潭大学自然科学学报》
CAS
CSCD
1998年第2期49-52,共4页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金
湖南省自然科学基金
关键词
量子动力学
自关联函数
准晶
非公度体系
quantum dynamics,incommensurate system, autocorrelation function, fractal dimension