期刊文献+

基于SVD的协同过滤算法的欺诈攻击行为分析 被引量:7

Analysis of shilling attacks on SVD-based collaborative filtering algorithm
下载PDF
导出
摘要 协同过滤是一种个性化推荐系统最常用的技术,但它对用户概貌信息较为敏感,欺诈攻击者很容易通过注入有偏差的用户概貌使系统的推荐结果有利于他们。研究表明欺诈攻击的攻击模型、攻击成本对攻击性能有不同程度的影响。针对这个问题,实验分析基于奇异值分解(SVD)的协同过滤算法在不同攻击模型下的性能表现,并以三种评估参数分析不同填充规模和攻击规模对攻击效率的影响。 Collaborative filtering is a vital central technology in personalized recommendation,but it is so sensitive to user profiles,that shilling attackers can easily inject biased profiles in an attempt to force a system to adapt in a manner advantageous to them.Recent research shows that the model and the cost of shilling attacks have different impacts on attack performance.This paper analyzes the attack effectiveness of different attack models on a SVD-based collaborative filtering algorithm,and the performances of attack models with different fill sizes and attack sizes using three evaluation parameters.
作者 徐翔 王煦法
出处 《计算机工程与应用》 CSCD 北大核心 2009年第20期92-95,共4页 Computer Engineering and Applications
关键词 协同过滤 推荐系统 欺诈攻击 奇异值分解 collaborative filtering recommender systems shilling attacks Singular Value Decomposition(SVD)
  • 相关文献

参考文献6

  • 1Resnick P,Iacovou N,Sushak M.GroupLens:An open architecture for collaborative filtering of netnews[C]//Proceedings of CSCW 1994, ACM SIG Computer Supported Cooperative Work,1994.
  • 2Sarwar B,KalTpis G,Konstan Let aLItem-based collaborative filtering recommendation algorithras[C]//Proc of the 10th International WorldWideWeb Conference,2001:285-295.
  • 3Mobasher B,Burke R,Sandvig J J.Model-based collaborative filtering as a defense against profile injection attacks[C]//Proceedings of the 21st National Conference on Artificial Intelligence(AAAI'06), 2006.
  • 4Lain S,Reidl J.ShiUing recommender systems for fun and profit[C]// Proceedings of the 13th International WWW Conference,New York, 2002.
  • 5Sawrar B M, Karypis G,Konstan J A.Application of dimensionality reduction in recommender systems-A case study[C]//ACM WebKDD 2000 Web Mining for E -Commerce Workshop, Boston, Massachusetts,July 16-20,2006.
  • 6Mobasher B,Burke R,Bhaumik R,et a.Effective attack models for shilling item-based collaborative filtering systems[C]//Proceedings of the 2005 Web KDD Workshop,Held in conjuction with ACM SIGKDD 2005, Chicago, Illinois, 2005.

同被引文献61

  • 1孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 2孙小华.协同过滤系统的稀疏性与冷启动问题研究[D].2006年浙江大学博士论文.
  • 3张翼.协同过滤技术在个性化图书馆中的应用研究[D].2006年复旦大学硕士论文.
  • 4Wu J L.Collaborative filtering on the Netflix prize dataset[D/EB]. http://dsec.pku.edu.cn/jinlong/.
  • 5Ricci F, Rokach L, Shapira B, et al.Recommender system hand- book[M].[S.l.] : Springer, 2011.
  • 6Adomavicius G, Tuzhilin A.Toward the next generation of rec- ommender systems:a survey of the state-of-the-art and possible extenstions[J].TKDE, 2005,17 (6): 734-749.
  • 7Bell R,Koren Y,Volinsky C.The bellkor 2008 solution to the Netflix prize[R].2007.
  • 8Paterek A.Improving regularized singular value decomposition for collaborative filtering[C]//KDD-Cup and Workshop.[S.l.]: ACM Press, 2007.
  • 9Lee D D,Seung H S.Learning the parts of objects by non-nega- tive matrix factorization[J].Nature,401:788-791.
  • 10Pan R, Zhou Y, Cao B,et al.One-class collaborative filtering[C]// IEEE International Conference on Data Mining(ICDM),2008.

引证文献7

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部