期刊文献+

利用广义帕雷托分布拟合中国东部日极端降水的试验 被引量:45

Extreme Precipitation Experimentation over Eastern China Based on Generalized Pareto Distribution
下载PDF
导出
摘要 引进广义帕雷托分布拟合我国东部地区78个测站夏季(5-9月)逐日极端降水量。结果表明,不同门限值条件下的逐日降水量所拟合的降水极值概率分布均符合广义帕雷托分布,与其它极值分布如广义极值(下称GEV)分布模式相比,以GPD模式为最优。根据现代气候条件,分别计算了50年一遇和100年一遇的极端降水量分位数并分析其空间分布特征,两者基本一致,总体上都呈现出由东南向西北方减小的趋势,且南北差异较大,南方的极端降水量值可能达到北方地区的两倍以上。此外,资料年份越长,拟合效果越好。 The Generalized Pareto Distribution (GPD) is introduced to simulate the daily extreme precipitation at 78 stations over Eastern China from May to September. The results indicate that the probability distribution of the daily extreme precipitation is subjected to GPD under the different threshold, and GPD is superior to other extreme value distributions such as Generalized Extreme Value Distribution (GEV). According to the observed climatic conditions from 1951--2000, the 50-year and 100-year return values of annual extreme precipitation are calculated, respectively and the space distribution features are analyzed. They are in substantial agreement which in general present downtrend from southeast to northwest, while there are obvious differences between south and north and the return values in the former area may reach more than twice compared to the latter one. In addition, the larger size of observed time series is, the better of the fitting is.
出处 《高原气象》 CSCD 北大核心 2009年第3期573-580,共8页 Plateau Meteorology
基金 国家自然科学基金项目(40875058) 江苏省高校自然科学重大基础研究项目(07KJA17020)共同资助
关键词 广义帕雷托分布 中国东部地区夏季日极端降水 概率分布拟合 Generalized Pareto Distribution (GPD) Extreme precipitation of summer over eastern China Probability distribution fitting
  • 相关文献

参考文献21

  • 1IPCC. Climate Change 1995 : The Second IPCC Scientific Assessment WMO/UNEP[R]//Houghton J T, et al. Cambridge University Press, Intergovernmental Panel on Climate Change, 1995:572.
  • 2Leadbetter M R, G I.indgren, H Rootzen. Ex'tremes and related properties of random sequences and process [[M]. Spring er-Verlag, 1983:336.
  • 3Mearns Katz R W. Extreme high-temperature events in their probabilities changes in mean temperature[J]. Climate and Appl Meteor, 1984, 23(2): 1601--1613.
  • 4Groisman P Ya, T R Karl, D R Easterling, et al. Changes in the probability of heavy precipitation: Important indicators of climatic change[J]. Clim Change, 1999, 42:243--283.
  • 5Easterling D R, J L Evans, P Ya Groisman, et al. Observed variability and trends in extreme climate events[J]. Bull Amer Meteor Soc, 2000, 81:417-425.
  • 6Panmao Zhai, Anjing Sun, Funmin Ren, et. al. Changes of Climate Extremes in China [J]. Climatic Change, 1999, 42: 203--218.
  • 7翟盘茂,任福民,张强.中国降水极值变化趋势检测[J].气象学报,1999,57(2):208-216. 被引量:455
  • 8翟盘茂,周琴芳.北半球雪盖变化与我国夏季降水[J].应用气象学报,1997,8(2):230-235. 被引量:33
  • 9Zhai P M, R E Eskridge. Atmospheric water vapor over China[J]. J Climate, 1997, 10:2643--2652.
  • 10程炳岩,丁裕国,汪方.非正态分布的天气气候序列极值特征诊断方法研究[J].大气科学,2003,27(5):920-928. 被引量:21

二级参考文献72

共引文献726

同被引文献666

引证文献45

二级引证文献447

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部