期刊文献+

基于Rao-Blackwellized粒子滤波器的FastSLAM算法研究与应用

Ivestigation and Application of FastSLAM Based on Rao-Blackwellized Particle Filter
下载PDF
导出
摘要 通过对传统的基于扩展卡尔满滤波器(EKF)的SLAM算法的介绍,总结出传统方法的缺陷,即算法复杂,用时长,无法实现在线计算.为解决传统SLAM算法的缺陷,介绍了一种基于Rao-Blackwellized粒子滤波器的FastSLAM方法.该方法将SLAM问题分解为对机器人姿态和路标在地图中的位置的递归算法,其时间消耗与路标的数量成对数关系,计算量小,用时短.经过以Hebut-II机器人为平台的实验,结果表明,FastSLAM算法是可行的. Summarizes the disadvantage of the traditional SLAM based on EKF through the introduction. Such as complexity and lasting long time, unable to achieve calculation online. To solve this problem, this paper presents FastSLAM, which is an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, and the time it requires scales logarithmically with the number oflandmarks in the map. Both emulate and real-world (Hebut II robot) experiments were carried out. The results show that, FastSLAM algorithm is a doable in both emulate and real-world environment.
出处 《河北工业大学学报》 CAS 北大核心 2009年第3期37-40,共4页 Journal of Hebei University of Technology
基金 国家863计划资助(2006AA04Z221) 河北省自然科学基金资助(E2006000030) 河北省教育厅科学研究计划(2005222)
关键词 机器人 同步定位 RAO-BLACKWELLIZED粒子滤波器 FASTSLAM mobile robot simultaneous localization Rao-Blackwellized particle filter FastSLAM
  • 相关文献

参考文献10

二级参考文献48

  • 1[1]Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics[A]. Proceedings of Conference on Uncertainty in Artificial Intelligence[C]. Amsterdam: North-Holland, 1988. 435-461.
  • 2[2]Csorba M. Simultaneous Localization and Map Building[D]. Oxford: University of Oxford, 1997.
  • 3[3]Dissanayake G, Newman P M, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 4[4]Leonard J J, Durrant-Whyte F. Simultaneous map building and localization for an autonomous mobile robot[A]. Proceedings of the IEEE International workshop on Intelligent Robots and Systems[C]. Osaka, Japan: 1991. 1442-1447.
  • 5[5]Leonard J J, Feder H J S. A computationally efficient method for large-scale concurrent mapping and localization[A]. Proceedings of the Ninth International Symposium on Robotics Research[C]. London: Springer-Verlag, 1999. 316-321.
  • 6[6]Guivant J, Nebot E, Baiker S. Autonomous navigation and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17 (10): 565-583.
  • 7[7]Wan E, Merwe R. The unscented Kalman-filter for nonlinear estimation[A]. Proceedings of the IEEE Symposium on Adaptive Systems for Signal Processing[C]. Alberta, Canada: 2000. 153-158.
  • 8[8]Castellanos J A, Tardos J D, Schmidt G. Building a global map of the environment of a robot: the importance of correlations[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. 1997.1053-1059.
  • 9[9]Leonard J, Feder H J S. Decoupled stochastic mapping[J]. IEEE Journal of Oceanic Engineer, 2001,26(4): 561-571.
  • 10[10]Williams S B. Efficient Solutions to Autonomous Mapping and Navigation Problems[D]. Sydney: University of Sydney, 2001.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部