摘要
借助于齐次平衡法获得了Boussinesq方程组的一个非线性函数变换,并通过这个变换把求Boussinesq方程组的解的问题转变成求一个线性常系数偏微分方程的解的问题,从而得到了Boussinesq方程组的一种解法。并通过这种解法得到Boussinesq方程组的一般形式的精确解与孤子解,并列出两种特殊情形的孤子解。此方法可推广研究一大类非线性演化方程组。
A nonlinear function transformation of the Boussinesq equations was derived by the homogeneous balance method, the solutions of Boussinesq equations were obstained through the solutions of one linear equation by means of the transformation,a solving method of Boussinesq was presented, general formal exact solutions and soliton solutions were obstained by the solving method, with two kinds of special solutions drawn out. the method can be generalized to the study of a class of nonlinear evolution equations.
出处
《渤海大学学报(自然科学版)》
CAS
2009年第2期143-145,共3页
Journal of Bohai University:Natural Science Edition
基金
辽宁省教育厅科研基金资助项目(No:20060022)。