摘要
本文借助于渐近中点、渐近半径的概念,得到一致凸Banach空间中非空有界闭凸子集上的连续集值渐近非扩张映射有不动点.从而把K.GoebelandW.A.Kirk的某些结果推广到集值渐近非扩张映射情形.本文还讨论了集值渐近非扩张型映射的不动点的弱收敛性,从而推广了GiovanniEmmanuele的某些结果.
Based on the concepts of asymptotic center point and the asymptotic radius, this paper discusses the existence and the weak convergence of the fixed point in the multi_valued asymptotically nonexpansive mappings. It reaches the conclusion that the continuous multi_valued asymptotically nonexpansive on the nonempty closed convex and bounded subset of a uniformly convex Banach space has a fixed point. Some results are generalized in K. Goebel and W. A. Kirk′s paper. The weak convergence of the fixed point of multivalued asymptotically nonexpansive_type mappings is discussed and some related results are thus generalized in Giovanni Emmanuele's paper.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1998年第6期116-120,共5页
Journal of South China University of Technology(Natural Science Edition)
关键词
不动点
集值渐近
非扩张型映射
弱收敛性
fixed point
Opial′s condition
uniformly convex
asymptotic center
asymptotic radius
multi-valued asymptotically nonexpansive-type mappings