期刊文献+

集值渐近非扩张型映射不动点存在及弱收敛性 被引量:1

EXISTENCE AND WEAK CONVERGENCE OF THE FIXED POINT IN THE MULTI-VALUED ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
下载PDF
导出
摘要 本文借助于渐近中点、渐近半径的概念,得到一致凸Banach空间中非空有界闭凸子集上的连续集值渐近非扩张映射有不动点.从而把K.GoebelandW.A.Kirk的某些结果推广到集值渐近非扩张映射情形.本文还讨论了集值渐近非扩张型映射的不动点的弱收敛性,从而推广了GiovanniEmmanuele的某些结果. Based on the concepts of asymptotic center point and the asymptotic radius, this paper discusses the existence and the weak convergence of the fixed point in the multi_valued asymptotically nonexpansive mappings. It reaches the conclusion that the continuous multi_valued asymptotically nonexpansive on the nonempty closed convex and bounded subset of a uniformly convex Banach space has a fixed point. Some results are generalized in K. Goebel and W. A. Kirk′s paper. The weak convergence of the fixed point of multivalued asymptotically nonexpansive_type mappings is discussed and some related results are thus generalized in Giovanni Emmanuele's paper.
作者 傅红卓
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 1998年第6期116-120,共5页 Journal of South China University of Technology(Natural Science Edition)
关键词 不动点 集值渐近 非扩张型映射 弱收敛性 fixed point Opial′s condition uniformly convex asymptotic center asymptotic radius multi-valued asymptotically nonexpansive-type mappings
  • 相关文献

参考文献1

  • 1傅红卓,华南理工大学学报,1993年,21卷,2期,11页

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部