摘要
导出减振器环形阀片大挠曲变形的解析式.针对环形薄板的von Kármán方程,基于钱氏摄动法,导出了减振器环形阀片刚度曲线方程.建立了高精度的阀片有限元模型并进行数值实验,以求解出刚度曲线方程中的两个待定系数.采用Lorentzian函数对系数进行非线性最小二乘分段拟合,从而得到环形阀片大挠曲变形的解析式.经数值计算验证,该解析式具有较高的计算精度.
To deduce the analytical formula of large deflection for annular throttle-slices in shock absorbers. Von Karman equations of annular plate are used to derive the rigidity curve equation for annular throttle-slice in shock absorbers on the basis of Chien-perturbation method. To get the two undetermined coefficients in the rigidity curve equation, high-precision finite element model is set up and carried on numerical tests. For the purpose of getting the analytical formula of large deflection problem for annular throttle-slice, Lorentzian function is used to nonlinear least squares curve sub-fitting for the two coefficients. Numerical results showed that the analytical solution is highly precise.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2009年第6期510-514,共5页
Transactions of Beijing Institute of Technology
基金
国家部委预研项目(51404040104BQ0146)
关键词
环形阀片
大挠曲
摄动法
有限元法
曲线拟合
annular throttle-slice
large deflection
perturbation method
finite element method
curve fitting