期刊文献+

Cu-Ni-Fe-Co合金的烧结致密化 被引量:2

Densification of Cu-Ni-Fe-Co alloys
下载PDF
导出
摘要 铝电解用连接导杆是连接阳极和电源的关键部件,在高温电解条件下起承载阳极的作用和承担大电流导通的任务,其原材料必须是导电的、有一定强度和高致密度的。该文采用粉末冶金方法制备Cu-Ni-Fe-Co合金材料,研究烧结温度对其密度及力学性能的影响,进而确定制备高致密度导杆合金材料的最佳烧结工艺。结果表明:该合金的相对密度随烧结温度的提高而提高,当烧结温度为1 250℃时能获得综合性能较好、相对密度为95.2%、晶粒尺寸为20~30μm的Cu-Ni-Fe-Co合金材料,其性能完全满足制作铝电解连接导杆的要求。 Due to the functions of hanging anode and conducting electricity, the connecting bar is a critical component used in aluminum electrolysis for joining anode and electric power source, and its raw materials should be conductive, strong enough and densified. Therefore, the Cu-Ni-Fe-Co alloy is prepared by conventional powder metallurgy method, the influence of sintering temperature on density and mechanical properties of the alloy was investigated, and the best sintering technology for preparing the alloy material of the connect-bar was determined. The results show that the density of this alloy increases with rising sintering temperature and pressing pressure. When sintering temperature is 1250℃, the Cu-based alloy with relative density of 95.2% and grain size of 20-30μm is obtained, which are suitable for preparing the connect-bar.
出处 《粉末冶金材料科学与工程》 EI 2009年第3期152-156,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展规划(973计划)资助项目(2005CB623703) 国家高技术研究发展计划(863计划)资助项目(2008AA030501) 湖南省自然科学基金(05530098) 国家自然科学创新团队资助项目(50721003)
关键词 粉末冶金 Cu基连杆 烧结 致密化 power metallurgy Cu-based connecting bar sintering densification
  • 相关文献

参考文献11

二级参考文献40

  • 1[1]JONGUNG C,HAE-YONG C,CHANG-YONG J.An upper-bound analysis for the forging of spur gears[J].Journal of Materials Processing Technology,2000,104:67-73.
  • 2[2]DEAN T A.The net-shape forming of gears[J].Materials and Design,2000,21:271-278.
  • 3[3]RO D H,FERGUSON B L,PILLAY S,et al.Powder metallurgy forging gear development contract number DAAE07-80-C-9115.U.S.Army Tank-automotive Command Research and Development Center.
  • 4[5]LITVIN F L.Theory of Gearing[M].NASA Reference Publication 1212,Washington D.C.,1989.
  • 5[6]LITVIN F L.Gear Geometry and Applied Theory[M].PTR Pretice Hall,New Jersey,1994.
  • 6[3]NANCY M,JACK E.The Aluminum Association Inc.Inert anode roadmap:a framework for technology development[EB/OL].http://www.oit.doe.gov/ aluminum/pdfs/inertroad.pdf,1998-02-03.
  • 7[4]RAY S P.Effect of cell operating parameters on performance of inert anodes in Hall-Héroult cells[C]//ZABREZNIK R D,Light Metals.Warrendale,PA:TMS,1987:367-380.
  • 8[5]BENEDYK J C.Status report on inert anode technology for primary aluminum[C]//ANJIER J L.Light Metals Warrendale PA:TMS,2001:36-37.
  • 9[6]de NORA V.Aluminium electrowinning the future[J].Aluminium,2000,76(12):998.
  • 10[7]BELYAEV A I,STUDENTSOV Y E.Electrolysis of alumina in fused cryolite with oxide anodes[J].Legkie Metally,1937,6(3):17-24.

共引文献105

同被引文献25

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部