期刊文献+

因果图结构的学习 被引量:1

The Learning on Causality Diagram Structure
下载PDF
导出
摘要 给出了一种利用已知数据样本集,自动构造因果图的结构的学习算法,该算法以最小描述长度评分函数(MDL)为评价准则,这种学习算法对数据不需要任何先验假设,可以学习任意结构的因果图,同时兼顾学习出的因果图结构的精确性和复杂性,实验结果显示了算法的有效性和可行性. A learning algorithm of constructing the Causality Diagram structure automatically according to a set of data is presented. The algorithm use minimum description length scoring function as evaluate rule. The algorithm does not need any prior hypothesis for the data set, it can learn all kind of Causality Diagram structure, and it can take the consideration of the Causality Diagram structure' s accuracy as well as its complexity. Experimental results show the validity and the feasibility of the new algorithm.
作者 王洪春
出处 《微电子学与计算机》 CSCD 北大核心 2009年第7期29-31,共3页 Microelectronics & Computer
基金 重庆市教委科学技术研究项目(KJ080817) 运筹学与系统工程重庆市市级重点实验室 重庆高校创新团队建设计划资助项目
关键词 因果图 最小描述长度评分函数 机器学习 causality diagram MDL machine learning
  • 相关文献

参考文献7

二级参考文献26

  • 1王洪春,石庆喜,张勤.基于因果图的一种推理算法[J].微电子学与计算机,2005,22(5):1-3. 被引量:15
  • 2王洪春,张勤.基于模糊因果图的故障诊断[J].微电子学与计算机,2005,22(6):109-112. 被引量:13
  • 3ZHANG Qin. Probabilistic Reasoning Based on Dynamic Causality Tree/Diagrams. Reliability Engineering and System Safety, 1994, 46: 209~220.
  • 4ZHANG Qin. Continuous Possibility Propagation Diagram Approach for Reasoning under Uncertainty. Proceedings of the IEEE International Conference on System, Man and Cybernetics, Piscataway, NJ, USA, 96CH35929, 1996,2:1426~1429.
  • 5樊兴华.[D].重庆:重庆大学自动化学院,2001.
  • 6Shu-Jen Chen, Ching-Lai Hwang, et al. Fuzzy Multiple Attribute Decision Making Methods and Applications. Germany Springer-Verlag Berlin Herdelberg, 1990: 220~252.
  • 7Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, USA: Morgan Kaufmann, 1988.
  • 8Pearl J. Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence, 1986, 29(3): 241-288.
  • 9Zhang Q. Probabilistic Reasoning Based on Dynamic Causality Trees/Diagrams. Reliability Engineering and System Safety,1994, 46(3): 209-220.
  • 10Heckerman D. A Tutorial on Learning with Bayesian Networks. Technical Report, MSR-TR-95-06, Microsoft Research, Redmond, USA, 1995.

共引文献16

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部