期刊文献+

焦炉煤气非催化部分氧化的数值模拟 被引量:1

NUMERICAL SIMULATION OF NON-CATALYTIC PARTIAL OXIDATION FOR COG
下载PDF
导出
摘要 用Fluent软件对焦炉煤气非催化部分氧化制取合成气的反应器内的温度场、浓度场和平衡气体组成进行了数值模拟.结果表明,氧气与焦炉煤气比是决定气化温度和出口合成气成分的关键.随着氧气与焦炉煤气比的增加,气化温度升高.在氧气与焦炉煤气质量比为0.14时,反应器出口的有效气体(H2+CO)含量达到最大值,焦炉煤气中的CH4几乎完全转化.在距反应器喷嘴0.05m处反应器内达到了最高温度3300K,在0.1m处H2和CO及CO2均达到平衡,CH4在该点降到最低点. The temperature field ,concentration field and equilibrium gas composition in reactor which is used to produce syngas by the method of non-catelytic partial oxidation for COG were simulated by the software Fluent. The results show that the oxygen to COG mass ratio is a key factor to deciding the gasification temperature and syngas composition at the export. By the increasing of the ratio, the gasification temperature improves also. When the ratio is 0.14, the content of effective gas (H2 +CO) reaches to the maximum, the CH4 in COG almost transformed completely. The temperature in the reactor reaches to the maximum 3 000 K when it is 0.05 m from the nozzle of the reactor, the contents of H2, CO and CO2 become to be balanced while the distance increased to 0.1 m, and CH4 decreased to the minimum.
出处 《煤炭转化》 CAS CSCD 北大核心 2009年第3期19-22,共4页 Coal Conversion
基金 国家重点基础研究发展计划(973)项目(2005CB221203)
关键词 焦炉煤气 数值模拟 有效气体 coke-oven gas, numerical simulation, effective gas
  • 相关文献

参考文献5

二级参考文献12

  • 1常丽萍,赵娅鸿.煤中固有矿物质在热解过程中对氮释放的影响[J].煤炭转化,2005,28(2):36-38. 被引量:10
  • 2王辅臣,李伟锋,代正华,陈雪莉,刘海峰,于遵宏.天然气非催化部分氧化制合成气过程的研究[J].石油化工,2006,35(1):47-51. 被引量:29
  • 3于遵宏.烃类蒸汽转化[M].北京:烃加工出版社,1989.128-134.
  • 4Ib Dybkjcer.Tubular Reforming and Autothermal Reforming of Natural Gas-an Overview of Available Processes[J].Fuel Process Technology,1995,42:85-107.
  • 5王辅臣.气流床气化过程研究[D].上海:华东理工大学,1995.60-80.
  • 6Klier K,Chatikananij V,Herman R G.Catalytic Synthesis of Methanol from CO/H2 (Ⅳ) The Effect of Carbon Dioxide[J].Journal Catalyst,1980,74:343-360.
  • 7Rostrup-Nielsen J R.Sulfur-passivated Nickel Catalysts for Carbon-free Steam Reforming of Methane[J].Journal of Catalyst,1984,85:31-43.
  • 8Christensen T S,Primdahl Ⅱ.Improve Syngas Production Using Autothermal Reforming[J].Hydrocarbon Process,1994,5:39-46.
  • 9国际能源署.中国能源展望[M].北京:清华大学出版社,2004.
  • 10Rhie C M ,Chow W L A. Numerical Study of the Turbulent Flow Past and Isolated Airfoil with Trailing Edge Separation[J]. AIAA, 1983, (21) :457-458.

共引文献80

同被引文献17

  • 1王辅臣,代正华,刘海峰,龚欣,于广锁,于遵宏.焦炉气非催化部分氧化与催化部分氧化制合成气工艺比较[J].煤化工,2006,34(2):4-9. 被引量:29
  • 2Bermúdez J M, Arenillas A, Menéndez J A. Equilibrium prediction of CO2 reforming of coke oven gas: suitability for methanolproduction[J]. Chemical Engineering Science, 2012, 82(1): 95-103.
  • 3Enger B C, Lodeng R, Holmen A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reactionmechanisms over transition metal catalysts[J]. Applied Catalysis A: General, 2008, 346(1/2): 1-27.
  • 4Law C K. Combustion at a crossroads: status and prospects[J]. Proceeding of the Combustion Institute, 2007, 31(1): 1-29.
  • 5Bourque G, Healy D, Curran H J, et al. Ignition and flame speed kinetics of two natural gas blends with high levels of heavierhydrocarbons[J]. Proc ASME Turbo Expo, 2008, 3(1): 1051-1066.
  • 6Smith G P, Golden D M, Frenklach M, et al. GRI-Mech-3.0[EB/OL]. [2015-03-27]. http://www.me.berkeley.edu/gri_mech.
  • 7Hughes K J, Turányi T, Clague A. Development and testing of a comprehensive chemical mechanism for the oxidation of methane[J].International Journal of Chemical Kinetics, 2001, 33(9): 513-538.
  • 8Konnov A A, Zhu J N, Bromly J H. Noncatalytic partial oxidation of methane into syngas over a wide temperature range[J]. CombustionScience and Technology, 2004, 176(7): 1093-1116.
  • 9吴永霞,代正华,李伟锋,郭晓镭,梁钦锋,王辅臣,于遵宏.焦炉气催化部分氧化的数值模拟[J].化学工程,2008,36(7):28-31. 被引量:2
  • 10曹苏,王铁峰.基于详细反应机理的甲烷部分氧化制乙炔过程模拟[J].过程工程学报,2009,9(5):940-946. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部